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Abstract. Given a suitable link map f into a manifold M , we constructed, in

[10], link homotopy invariants κ(f) and µ(f). In the present paper we study the
case M = Sn × Rm−n in detail. Here µ(f) turns out to be the starting term

of a whole sequence µ(s)(f), s = 0, 1, . . . , of higher µ-invariants which together

capture all the information contained in κ(f). We discuss the geometric significance
of these new invariants. In several instances we obtain complete classification results.
A central ingredient of our approach is the homotopy theory of wedges of spheres.

1. Introduction

Given dimensions p1, . . . , pr ≥ 1 and m > n ≥ 1, we want to classify link
maps

f = f1 q · · · q fr : Sp1 q · · · q Spr −→ M := Sn × Rm−n (1.1)

(i.e. the spheres Spj have pairwise disjoint images under the continuous maps
fj , 1 ≤ j ≤ r) up to link homotopy (i.e. continuous deformations through such
link maps). Our approach centres around the homotopy class (in the standard
sense)

κM(f) := [f̂ ] ∈ [Sp1 × · · · × Spr , C̃r(M)] (1.2)

where the product map f̂ := f1×· · ·× fr takes values in the configuration space
of ordered r-tuples of pairwise distinct points in M .

Unfortunately, this very natural link homotopy invariant lies in a rather unwieldy
homotopy set. However, if f is κM -Brunnian (i.e. if f̂ is nulhomotopic when
restricted to the complement of a point in Sp1×· · ·×Spr ), one can simplify (a base
point preserving version of) κM(f) considerably and then extract the “numerical”
link homotopy invariant

µM(f) ∈
(r−2)!⊕

πS
p1+···+pr−(r−1)(m−2)−1 (1.3)
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which generalizes e.g. Milnor’s µ-invariants of classical links and, in particular, the
classical linking number when r = 2. As the example of the higher dimensional
Borromean link illustrates, µM(f) is in general weaker than κM(f) (cf. [10], 5.9).

In the present paper we measure this loss of information. In Section 3 we show
that µM(f) is only the starting element of a whole sequence {µ(s)

M (f)}s≥0 of
higher order µ-invariants which together characterize κM(f) (cf. theorem 3.5).
Furthermore we investigate the geometric meaning of the remaining higher invari-
ants: they turn out to be the standard µRm-invariants of the augmented link maps
in Rm which consist of f , included into Rm, together with a finite number of

meridians {zj}× Sm−n−1 around M ∼= Sn ×
◦
Bm−n (cf. theorems 3.8 and 4.3).

The requirement that f is κM -Brunnian allows us to concentrate on linking
phenomena of highest order, but it is quite restrictive. In particular we can define
µ(s)(f) only if all µ-invariants of all proper sub-link maps of f are defined and
trivial. However, if p1, . . . , pr ≤ m− 3 this restriction can be avoided: in section
4 we define a sum operation (conceivably without additive inverses) and use it to
extend our invariants to all link maps whether they are κM -Brunnian or not. In
particular, this allows us to introduce the total higher µ-invariant �(f) which
consists of the homotopy classes [fj ] ∈ πpj (S

n) of the component maps as well
as of all (higher) µM -invariants of all sub-link maps fj1 q · · · q fjs , 2 ≤ s ≤ r, of
f .

Example: p1 = · · · = pr = 3, m = 6 > n ≥ 1. Given r ≥ 1, let BLM3,...,3(Mn)
denote the semigroup of all (base point preserving if n = 1) link homotopy classes
of link maps

f =
r∐

j=1

fj :
r∐

S3 −−−→ Mn := Sn × R6−n .

Then for n = 1 the total higher µ-invariant � is injective on

BLM3,...,3(Mn) ∼=

( ∞⊕
Z2

)(r
2)

⊕
( ∞⊕

Z
)(r

3)
;

for n > 1, � establishes the isomorphism

BLM3,...,3(Mn) ∼= Z(r
2)

2 ⊕ Z(r
3) ⊕ Za

where a =
(
r+1
2

)
, r and 0, resp., for n = 2, 3 and ≥ 4, resp.

Moreover, the obvious inclusions Mn ⊂ Mn+1 induce homomorphisms which
annihilate Za and correspond to summation or to the identity on the remaining
direct summands.

This will be proved in section 5 where we compare quite generally our invariants
to linking coefficients of embedded links in codimensions greater than 2. It turns
out that the transition from link isotopy to link homotopy translates into applying
Freudenthal suspensions to crucial components of the linking coefficients. (In view
of the close relation between the exact link homotopy sequence and James’ EHP-
sequence (cf. [8], theorem 3.1) this comes as no surprise).

Such investigations open the way to further injectivity, surjectivity, and nontriv-
iality results for our invariants and also to criteria deciding which aspects of the
linking coefficient depend only on the link homotopy class of an embedded link.
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Example: n = 1, r = 2, p1, p2 ≤ m−3. Assume that πp2(S
m−p1−1) is stable (i.e.

the stable suspension is bijective). Then the total higher µ-invariant � establishes
an isomorphism from the semigroup consisting of all base point preserving link
homotopy classes of those link maps f1 q f2 : Sp1 q Sp2 −→ S1 × Rm−1 where
f1 is a smooth embedding, onto πp1(S

1)⊕ πp2(S
1)⊕

⊕∞
πS

p1+p2−m+1.

If we add “parallel longitudes” to an embedded link f our techniques allow us
also to capture certain components of the linking coefficient of f which are not
invariant under link homotopy. Details will be given elsewhere. Let us just note
here that this approach leads sometimes to a full isotopy classification. E. g. if
2 ≤ p ≤ 2

3 (m − 2) it follows from [3], Corollary 1.3 (compare also [5], § 4) that
any smooth embedding f1 : Sp ↪→ S1×Rm−1 which is nullisotopic when included
into Rm, is already determined up to isotopy by �(f1 q f+

1 ) where f+
1 is such a

parallel longitude.
For our analysis of κ-invariants and of linking coefficients we need a good geo-

metric understanding of the homotopy groups of wedges of spheres. In section 2
we study these not just via the “incoming” Hilton isomorphism but mainly via
“outgoing” Hopf homomorphisms which enjoy many compatibility properties and
are more suited to detect relevant geometric aspects of our invariants.

Notations and Conventions. From now on we always assume r ≥ 2, m ≥
3, p1, . . . , pr ≥ 1. Σs and E(∞) denote the permutation group in s elements
and (stable) suspension, resp. All spheres and their wedges are equipped with base
points. Homotopy classes in such wedges are identified, via Pontryagin-Thom, with
bordisms classes of framed links.

2. Pinching and Hopf homomorphisms

Throughout this section let n ≥ 1 and r, q1, . . . qr−1 ≥ 2 be natural numbers;
put

|q| := q1 + · · ·+ qr−1 . (2.1)

We will extend the geometric Hopf homomorphism discussed e.g. in § 3 of [9] in
order to study the homotopy groups of the wedge

W := Sn ∨
r−1∨
j=1

S
qj

j (2.2)

of spheres of the indicated dimensions. More specifically, in view of later applica-
tions we will be interested in certain subgroups such as the reduced groups

π′k(W ) :=
r−1⋂
i=1

ker

πk(W ) −→ πk(Sn ∨
r−1∨
j=1
j 6=i

S
qj

j )

 , (2.3)

k ∈ Z, defined by the obvious collapsing maps.

Definition 2.4. Given an integer s ≥ 0, a permutation γ of the set {1, . . . , s, . . . ,
r + s− 2} is called s-monotone if γ−1(1) < · · · < γ−1(s).
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Let
∑

r,s ⊂
∑

r+s−2 denote the subset of s-monotone permutations in the full
permutation group of r + s− 2 elements.

Since the s-monotone permutations form a system of representatives of the cosets
in
∑

s \
∑

r+s−2 we have

ur,s := |
∑
r,s

| = (r + s− 2)!/s! (2.5)

Given s ≥ 0, consider also the s-fold pinch map

pinchs : (Sn, ∗) −→
s∨

j=1

(Sn
j , ∗)

which has degree 1 when collapsed to any wedge summand Sn
j (and, if n = 1,

traverses the circles Sn
j in the order given by the subindex j); these requirements

determine pinchs uniquely up to homotopy. For every permutation γ ∈
∑

r+s−2

we define the homomorphism

Hs,γ : πk(W ) −→ πS
k−sn−|q|+r+s−2 , (2.6)

k ∈ Z, by Hs,γ = hγ ◦ (pinchs ∨ id)∗ where hγ is the Hopf invariant described
in § 3 of [9]. Summing over all s-monotone permutations γ we obtain

Hs :=
⊕

γ∈
P

r,s

Hs,γ : πk(W ) −→ (πS
k−sn−|q|+r+s−2)

ur,s . (2.7)

We define the total Hopf homomorphism H by the direct product

H :=
∏
s≥0

Hs : πk(W ) −→
∏
s≥0

(πS
k−sn−|q|+r+s−2)

ur,s . (2.8)

Now consider first the case when n ≥ 2 (then the above product is actually a
finite direct sum).

Given s ≥ 0, the homotopy class of pinchs remains unchanged if we permute
the wedge summands in ∨sSn

j ; thus using only s-monotone permutations γ in 2.7
above helps us to avoid unnecessary redundancies.

Moreover, we choose a Hilton decomposition of π∗(W ) (cf. [6]) and we define

π′′k (W ) :=
⊕
t≥0

π′′k (W, t) ⊂ π′k(W ), k ∈ Z , (2.9)

where for any integer t ≥ 0 π′′k (W, t) denotes the direct summand corresponding
to all basic Whitehead products which involve the inclusion ι0 : Sn ⊂ W precisely
t times and each inclusion ιj : S

qj

j ⊂ W precisely once, j = 1, . . . , r − 1.
Note that any such iterated Whitehead product w, basic or not, is a Z–linear

combination of Whitehead products of the form

ιδ := [ιδ(1), [ιδ(2), [. . . , [ιδ(r+t−2), ιr−1]]]] (2.10)

where the same factors occur the same number of times, bracketed in the indicated
special fashion and arranged in the order prescribed by a map δ : {1, ..., r+t−2} →
{0; 1, . . . , r − 2}. This follows inductively from the Jacobi identity. Indeed, if w
contains a subproduct of the form [[a, b], w1] where ±w1 is the longest subproduct
involving ιr−1 and bracketed as in 2.10, then we may replace [[a, b], w1] by
±[a, [b, w1] ± [b, [a,w1]]. We repeat such substitutions until ιr−1 occurs only in
longer subproducts [ι`, w1] which are bracketed as in 2.10.

Now we can evaluate our Hopf homomorphisms.
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Proposition 2.11. Assume n ≥ 2. Given any integers s, t ≥ 0, let γ ∈
∑

r+s−2

be a permutation and let δ : {1, . . . , r + t− 2} → {0; 1, . . . , r − 2} be a map such
that δ−1({j}) consists of precisely one element for j = 1, . . . , r − 2.

If s = t and δ is the “contraction” of γ (i.e. δ(i) = max(γ(i) − t, 0) for
i = 1, . . . , r + t− 2), then for all k ∈ Z the composite map

πk(Stn+|q|−r−t+2) ιδ∗−−→ πk(W )
Hs,γ−−−→ πS

k−sn−|q|+r+s−2

(cf. 2.6 and 2.10) equals the stable suspension E∞ up to a ±–sign.
In all other cases Hs,γ ◦ ιδ∗ ≡ 0.
Moreover, for s ≥ 0 Hs vanishes on all those Hilton summands of π∗(W )

which are not contained in π′′∗ (W, s).

Proof. If s ≤ t, the first two claims follow from arguments (based e.g. on the
fibrewise intersection approach to Hopf invariants) similar to those in the proof
of theorem 3.1 in [9]. Pinching (or, equivalently, replacing certain submanifolds
by several “parallel” copies) adds no difficulties since all codimensions are strictly
larger than 1.

If s > t, then the intersection approach to Hs,γ(ιδ) requires two steps. At
first we carry out the iterated intersection procedure described in [9], pp. 306–307,
until we are confronted with the overcrossing locus

g|Nγ(1) > · · · > g|Nγ(s−t) > ḡ|I

as in [9], (12). Here I, if non empty, consists of a single point and hence is not
nulbordant. But Nγ(1) has a standard nulbordism B; thus we may replace over-
crossings again by intersections, but in the reverse order, i.e. starting with B∩Nγ(2)

etc. All necessary intermediate nulbordisms exist (since no Nγ(i) corresponds to
ιr−1) and they have strictly positive codimensions so that they miss I generically.
As in [9], top of p. 309, this argument can be applied fibre by fibre to show that
Hs,γ ◦ ιδ∗ ≡ 0.

Finally, if a Whitehead product ιδ as in 2.10 involves a factor ιj for some
j, 1 ≤ j ≤ r − 2, more than once then Hs,γ ◦ ιδ∗ ≡ 0 since in the iterated
(standard) intersection process Hs,γ can register only the “innermost” factor ιj
and treats all outer ones as if they were zero. With a little extra care such an
argument can also be adapted to j = r−1. In view of the discussion following 2.10
we conclude that Hs,γ ◦ w∗ ≡ 0 for every basic Whitehead product w ∈ π∗(W )
which involves some factor ιj , 1 ≤ j ≤ r − 1, more than once (or not at all) or
which involves ι0 t times, t 6= s. �

Theorem 2.12. Assume n ≥ 2. Given any integers k and s ≥ 0, the (restricted)
Hopf homomorphism Hs| = Hs|π′′k (W ; s) (cf. 2.7 and 2.9) fits into the commuting
diagram
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where
∑

w`∗ is the Hilton isomorphism, E∞ denotes stable suspension and Ds∗
is defined by the operation of an invertible matrix Ds ∈ GL(ur,s;Z).

In particular, if k ≤ 2(|q| − r + 1 + s(n− 1)), then Hs| is bijective.
If even k ≤ 2(|q| − r + 1), then H (cf. 2.8) restricts to the isomorphism (cf.

2.9)

H| : π′′k (W )
∼=−−−−−→

⊕
s≥0

(
πS

k−|q|+r−2−s(n−1)

)ur,s

.

Proof. In view of [6], p. 155, the number of basic Whitehead products w` generat-
ing π′′k (W ; s) turns out to coincide with ur,s (compare 2.5). Up to transposition
and ± signs, the ur,s×ur,s–matrix Ds consists of the integer coefficients encoun-
tered when we express these w` in terms of the elements ιδ as in 2.10 (for t = s)
or, equivalently, of their π′′∗ (W, s)–components. But these, in turn, are Z–linear
combinations of the basic Whitehead products w`. Thus Ds is invertible.

As in 2.11 we evaluate the Hopf invariants Hs fibrewise via the intersection
approach (compare [9], p. 308–309); this yields our commutativity claim. �

It remains to discuss the case when n = 1.
Let W̃ denote the universal covering space of W . We may think of it as a real

line R, with a wedge W̃g =
∨r−1

j=1 S
qj

j,g attached at every integer g ∈ Z ⊂ R. We
write

c : W̃ −→ R (2.13)

for the obvious “level” map. It is compatible with the “shifts” (deck transforma-
tions) by elements in Z = π1(W ) = π1(S1).

On the other hand, there is a canonical isomorphism π∗(W̃ ) ∼= π∗(∨gW̃g) and
we may choose a Hilton decomposition based on Whitehead products which involve
the inclusions ιj,g : S

qj

j,g ⊂ ∨gW̃g (where 1 ≤ j ≤ r − 1 and g ∈ Z).
This applies also to our original wedge W via the isomorphism

p∗ : π′∗(W̃ )
∼=−−−→ π′∗(W ) (2.14)

of reduced homotopy groups (compare 2.3 and also [10], 2.6 and 2.10) where p
denotes the covering projection. Then π′∗(W ) is the direct sum of all Hilton
summands corresponding to basic Whitehead products which for each j = 1, . . . , r−
1 involve at least one factor of the form ιj,g, g ∈ Z. Define the subgroup

π′′∗ (W ) ⊂ π′∗(W ) (2.15)

to be the direct sum of all such summands which involve precisely one such factor
for each j.

Now let us evaluate our Hopf homomorphisms on an arbitrary class [v] ∈
π′k(W ). We adopt the intersection approach outlined in [9], pp. 306–307.
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Figure 2.16. The arrangement of the manifolds Nj,g and Mg(i)
(Here link components and other subsets of Rk are listed, together
with their images in R under c ṽ)

Let ṽ : Sk → W̃ be the lifting of a generic representative v. Then for
j = 1, . . . , r − 1 the link component

Nj = v−1({zj}) ⊂ Rk = Sk − {∗}

corresponding to S
qj

j is the disjoint union of the manifolds

Nj,g = ṽ−1({gz̃j}), g ∈ Z ; (2.17)

here zj ∈ S
qj

j −{∗} and gz̃j ∈ S
qj

j,g−{∗} are regular values of v and ṽ. Similarly
the link component M = v−1({z0}), z0 = (−1, 0) ∈ S1 − {∗} ⊂ W , is the
disjoint union of the hypermanifolds Mg = ṽ−1({g− 1

2}), g ∈ Z, which decompose
Rk into the strips Qg = (cṽ)−1[g− 1

2 , g+ 1
2 ]. Note that Q0 is unbounded and that

Nj,g = Qg ∩Nj for j = 1, . . . , r − 1 and all g ∈ Z .

For s ≥ 0 pinching S1 s times amounts to replacing M (and Mg) by s nearby
“parallel” copies M(i) (and Mg(i)), i = 1, . . . , s, (where e.g.

Mg(i) = (cṽ)−1({g − 1
2

+ iε}) , g ∈ Z , (2.18)

for some small fixed ε > 0, compare figure 2.16).
Given an s–monotone permutation γ ∈

∑
r,s (cf. 2.4), it will be convenient

to calculate the Hopf invariant Hs,γ [v] via iterated intersections as in [9], (12),
but in the reverse order (this changes the value only by a fixed sign which is ob-
vious from the overcrossing description of Hs,γ [v], cf. p. 306 of [9]). Thus if
N(γ(1)), N(γ(2)), . . . , N(γ(r + s − 2)), Nr−1 are the link components of
(pinchs ∨ id)∗[v], listed in the order given by γ, intersect a framed (singular) nul-
bordism of N(γ(1)) in Rk with N(γ(2)) to obtain a closed framed singular
manifold N(γ(1), γ(2)); similarly, intersect a nulbordism of N(γ(1), γ(2)) in Rk
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with N(γ(3)), etc., until finally a nulbordism of N(γ(1), . . . , γ(r + s − 2)) is
intersected with Nr−1 to yield ±Hs,γ [v].

Since by assumption [v] lies in the reduced homotopy group π′k(W ), all inter-
mediate intersections which occur in this process are indeed nulbordant. In fact,
often we have even canonical nulbordisms. E.g. Mg(i) bounds the compact man-
ifold Bg(i) defined to be (cṽ)−1[g − 1

2 + iε, +∞) if g ≥ 1, or, with opposite
sign, (cṽ)−1(−∞, g − 1

2 + iε] if g ≤ 0. Thus B(i) =
⋃

g∈Z Bg(i) is a nulbordism
of M(i) which, for every g ∈ Z, covers most of the strip Qg – and hence all of
Nj,g, j = 1, . . . , r − 1, – precisely g times. Figure 2.16 may help to visualize such
statements.

Similarly, Bg(i) ∩Bg′(i′) is a nulbordism of ±Bg(i) ∩Mg′(i′) if 1 < g + iε <
g′ + i′ε or 1 > g + iε > g′ + i′ε etc.

Example 2.19: r = 2. Here the generic base point preserving map

ṽ : Sk −→ W̃ ∼
∨
g∈Z

Sq1
1,g

corresponds to the (finite) framed link

N1 =
∐
g∈Z

N1,g ⊂ Rk = Sk − {∗}

For each g ∈ Z the (stable) framed bordism class

[N1,g] ∈ Ωfr
k−q1

∼= πS
k−q1

is given by the stable suspension of the composite of ṽ with the map which collapses
all wedge summands Sq1

1,g′ , g′ 6= g, to a point.
For each s ≥ 0 there is only one s–monotone permutation γ ∈

∑
2,s. We

can apply the previous discussion to the resulting Hopf homomorphism Hs = Hs,γ

and obtain

±Hs([v]) =
∑
g∈Z

(
g + s− 1

s

)
[N1,g] ∈ πS

k−q1
. (2.20)

Indeed, H0([v]) does not involve any of the hypermanifolds Ng(i) and ±H0([v])
is just equal to [N1] =

∑
[N1,g]. Next,

±H1([v]) = [B(1) ∩N1] =
∑
g′

[Bg′(1) ∩N1]

counts each link component N1,g precisely g times since it is contained in just
so many 0–codimensional bordisms Bg′(1) (which have the opposite orientations
for g′ ≤ 0 so that the signs are also correct). In the same spirit but more
generally, let bs,g denote the integer which counts the relevant s–fold intersections
Bg1(1)∩ · · ·∩Bgs

(s) containing N1,g, s ≥ 1, g ∈ Z. (By “relevant” we mean that
the intersection can contribute to Hs[v], i.e. Bgi

(i) ⊃ Mgi+1(i + 1) for 1 ≤ i < s).
Comparing such intersections to those which contain N1,g−1, we see that

bs,g = bs,g−1 + bs−1,g (2.21)
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(figure 2.16 may again be helpful here). The identity

bs,g =
(

g + s− 1
s

)
(2.22)

and formula 2.20 follow now by induction over s (and, for fixed s, over |g|). �

The next result shows that the sequence {[N1,g]}g∈Z is completely determined
by the sequence {Hs([v])}s≥0 of Hopf invariants.

Lemma 2.23. For any abelian group A the homomorphism

d =
∏
s≥0

ds :
⊕
g∈Z

A −→
∏
s≥0

A ,

defined by ds((ag)g∈Z) =
∑

g∈Z
(
g+s−1

s

)
ag, is injective.

Proof. Given any integers n ≥ 0 and n0, consider the (n + 1)× (n + 1)–matrix
M(n, n0) with entries

bs,g =
(

g + s− 1
s

)
, 0 ≤ s ≤ n, n0 − n ≤ g ≤ n0 .

When we subtract the nth column from the (n + 1)st one, the (n − 1)st column
from the nth column and so forth, the top row takes the form (1, 0, . . . , 0) and
– in view of 2.21 – the n × n–submatrix in the lower right hand corner coincides
with M(n− 1, n0). Thus

det M(n, n0) = det M(n− 1, n0) = · · · = det M(0, n0) = 1 .

Since every element of ker d lies already in the kernel of the endomorphism
M(n, n0) on

⊕
n0−n≤g≤n0

A for suitable n and n0, our lemma follows. �

Next let r ≥ 2 be arbitrary. Given an (r−1)–tuple (g) = (g1, . . . , gr−1) ∈ Zr−1

of integers and a permutation γ̄ ∈
∑

r−2, let

h(g),γ̄ : π′k(W ) −→ πS
k−|q|+r−2 (2.24)

be the homomorphism which maps a homotopy class [v] ∈ π′k(W ) or, equivalently,
the corresponding framed link q Nj,g ⊂ Rk as in 2.17, to the Hopf invariant (cf.
[9], § 3)

hγ̄

(
N1,g1 q . . . q Nr−1,gr−1

)
of the indicated sublink (on the homotopy level the selection of this sublink is
induced by the obvious map which collapses W̃ to

∨r−1
j=1 S

qj

j,gj
, compare the

discussion preceding 2.14).
Now, for s ≥ 0, consider an s–monotone permutation γ ∈

∑
r,s. Then the list

of values of γ takes the form

(1, . . . , s1; γ̄(1)+s; s1+1, . . . , s1+s2; γ̄(2)+s; . . . ; γ̄(r−2)+s; s1+· · ·+sr−2+1, . . . , s)
(2.25)

where (s) = (s1, . . . , sr−1) ∈ Zr−1
+ is an (r−1)–tuple of nonnegative integers whose

sum equals s, and γ̄ ∈
∑

r−2; in words: si (strictly increasing) values lying in
{1, . . . , s}, i = 1, . . . , r−1, alternate with the values γ̄(i)+s ∈ {s+1, . . . , r+s−2}
which appear in the order given by the permutation γ̄. We obtain a bijection
between such pairs ((s), γ̄) and the corresponding s–monotone permutations
γ((s), γ̄) ∈

∑
r,s defined by 2.25.
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Proposition 2.26. For γ = γ((s), γ̄) as above and for every homotopy class
[v] ∈ π′k(W ), k ∈ Z, (cf. 2.3) we have

Hs,γ([v]) = ε ·
∑

(g)=(g1,...,gr−1)∈Zr−1

r−1∏
j=1

(
ḡj − ḡj−1 + sj − 1

sj

)
h(g),γ̄ ([v])

where ε = ±1 is a fixed sign depending only on γ and k, and ḡj := gγ̄(j) for
j = 1, . . . , r − 2 (and ḡ0 := 0 and ḡr−1 := gr−1).

Proof. Adopting the intersection approach (see the discussion which follows 2.18)
we iterate the procedure used in example 2.19 (compare 2.20). After the first step
(i.e. after the s1–fold intersection with “standard” 0–codimensional nulbordisms),
each link component Nγ̄(1),ḡ1 (cf. 2.18), ḡ1 ∈ Z, is counted with the multiplicity
bs1,ḡ1 (cf. 2.22).

If r > 2 then each Nγ̄(1),ḡ1 , in turn, allows a (generic, singular) nulbordism B

in Rk (use 2.15 and the fact that [v] is reduced). Since c ◦ ṽ maps ∂B to ḡ1

(cf. figure 2.16), B ∩Mg(i) (cf. 2.18), g ∈ Z, bounds the intersection of B with
(cṽ)−1[g − 1

2 + iε,∞) if g > ḡ1, and with (cṽ)−1(−∞, g − 1
2 + iε] if g ≤ ḡ1. In

the second step of our iteration we have to intersect B s2–times in this fashion
and then with Nγ̄(2). This results in B ∩Nγ̄(2),ḡ2 , ḡ2 ∈ Z, being counted with the
(additional) multiplicity bs2,ḡ2−ḡ1 (use the same arguments as in example 2.19,
but with g replaced by g − ḡ1).

Continuing this process and intersecting with Nr−1 in the last step, we obtain
the indicated linear combination of the Hopf invariants h(g),γ̄ [v]. Each of these
can be evaluated via the intersection approach since [v] is reduced and hence
all (intermediate intersections involving) sublinks with strictly less than r − 1
components Nj,g allow nulbordisms (compare 2.14). �

Now we are ready to establish the analogue of theorem 2.12.

Theorem 2.27. Assume n = 1. Then for all integers k the Hopf homomorphism
H (cf. 2.8), when restricted to π′′k (W ) (cf. 2.15), fits into the commuting diagram

where
∑

w`∗ is the Hilton isomorphism (cf. 2.15), E∞ denotes stable suspension
and D is a group monomorphism. Moreover, H vanishes on all those Hilton
summands of πk(W ) which are not contained in π′′k (W ).

In particular, if k ≤ 2(|q| − r + 1), then H is injective on π′′k (W ).
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Proof. According to the last proposition there is a commuting diagram

where the range of H is indexed by all s–monotone permutations, s ≥ 0, in the
form γ = γ((s), γ̄) (compare 2.25) and D′ is defined by the Z–linear combinations
in 2.26.

First we want to prove that D′ – or, equivalently, D′
γ̄ for each γ̄ ∈

∑
r−2 – is

a monomorphism. After reparametrizing suitably we must show this only for the
map D′

r−1 defined by

D′
r−1((a(g))(g)∈Zr−1) =

∑
(g)

r−1∏
j=1

(
gj + sj − 1

sj

)
a(g)


(s)∈Zr−1

+

.

Thus suppose that
a = (a(g))(g)=(g1,...,gr−1)∈Zr−1

lies in the kernel of D′
r−1. Then for every (s) = (s1, . . . , sr−1) ∈ Zr−1

+ the
expression

∑
gr−1∈Z

(
gr−1 + sr−1 − 1

sr−1

) ∑
(g1,...,gr−2)∈Zr−2

r−2∏
j=1

(
gj + sj − 1

sj

)
a(g1,...,gr−2,gr−1)


vanishes, and so does the sum to the right hand side, for every fixed gr−1 ∈ Z,
by lemma 2.23. Note that such sums, indexed by (s1, . . . , sr−2), constitute the
value of a(−,...,−,gr−1) under D′

r−2. Thus we can iterate our argument until the
injectivity of D′

1 = d (cf. 2.23) implies that a = 0.
Next we have to compare, for fixed (g) ∈ Zr−1, the values of h(g),γ̄ , γ̄ ∈

∑
r−2,

to the stable suspensions of the Hilton components which correspond to the basic
Whitehead products in ι1,g1 , . . . , ιr−1,gr−1 . When we deal with π′′k (W ), each of
these factors is involved precisely once, and the comparison can be expressed via
an invertible matrix D0 as in theorem 2.12. Composing

⊕
(g) D0∗ with D′ we

obtain the desired monomorphism D in 2.27.
Finally, consider a basic Whitehead product which, for some 1 ≤ j ≤ r − 1,

involves more than one factor of the form ιj,g, g ∈ Z (or none at all). As in the
proof of proposition 2.11 we conclude that H ◦w∗ ≡ 0. Clearly, also H|π1(W ) ≡ 0.
�

In view of theorems 2.12 and 2.27 it is of interest to compare the subgroups
π′k(W ) and π′′k (W ) of πk(W ), k ∈ Z (cf. 2.3, 2.9, and 2.15).
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Lemma 2.28. Assume n ≥ 1. If

k ≤ |q| + qj − r for j = 1, . . . , r − 1 ,

then π′k(W ) = π′′k (W ).

Indeed, π′′k (W ) (or π′k(W ), resp.) is the direct sum of the Hilton summands
corresponding to those basic Whitehead products which for every j = 1, . . . , r − 1
involve the inclusion ιj : Sqj ⊂ W (if n ≥ 2) or an inclusion of the form
ιj,g : Sqj ⊂ W̃ (if n = 1) precisely once (or at least once, resp.). In the indicated
dimension range the additional Hilton summands in π′k(W ) are all trivial.

3. Higher µ-invariants and their geometry

From now on let M denote the manifold Sn ×Rm−n (where 1 ≤ n < m ≥ 3)
unless mentioned otherwise. Pick a suitable base point y0 = (y0

1 , . . . , y0
r) of the

configuration space

C̃r(M) = {(y1, . . . , yr) ∈ Mr | yi 6= yj for 1 ≤ i 6= j ≤ r} (3.1)

Suitable embeddings Sn = Sn×{x0} ⊂ M and (
∨r−1

Bm
j , ∗) ⊂ (M, y0

r) (such
that the base point y0

j lies in the interior of the ball Bm
j , j = 1, . . . r − 1) yield

a homotopy equivalence

Sn ∨
r−1∨
j=1

Sm−1
j ↪→ M − {y0

1 , . . . , y0
r−1}

which is canonical up to homotopy (if in the case n = m − 1 we also require
x0 ∈ R to be so small that y0

1 , . . . , y0
r−1 ∈ Sm−1 × (x0,∞)). Together with the

“fibre inclusion”

M − {y0
1 , . . . , y0

r−1} −→ C̃r(M), y −→ (y0
1 , . . . , y0

r−1, y) ,

and an obvious quotient map this induces the injective composite map

(3.2)
(compare [10], 2.5) where

|p| := p1 + · · ·+ pr . (3.3)

Now we are ready to define higher µ-invariants. First we work in a setting where
the base points ∗ ∈ Spj are preserved by link maps and link homotopies. Later
we will also comment on the question as to when the resulting invariants remain
unchanged under base point free link homotopies.

Thus let

f = f1 q · · · q fr : Sp1 q · · · q Spr −→ Sn × Rm−n
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be a κM -Brunnian link map which, in addition, preserves base points, i.e. fj(∗) = y0
j

for j = 1, . . . , r. Then according to [10], 2.4, there is a unique reduced homotopy
class κ′M(f) as in diagram 3.2 above such that quot∗ ◦ incl∗(κ′M(f)) equals the
base point preserving version κb

M(f) of the κ-invariant of f (compare 1.2). For
s ≥ 0 define

µ
(s)
M (f) := Hs(κ′M(f)) ∈

ur,s⊕
πS
|p|−s(n−1)−(r−1)(m−2)−1 (3.4)

(cf. 2.7).
Note that µ

(0)
M (f) coincides with the invariant µM(f) discussed in [10], § 2.

Indeed, the homomorphism ca used there is induced by the map which collapses
Sn; hence H0 = h ◦ ca (if n = m − 1 we assume here that the arcs involved in
ca converge to Sm−1 × {+∞}).

The main results 2.12 and 2.27 of the previous section, together with lemma
2.28, now imply

Theorem 3.5. If p1 + · · · + pr ≤ r(m − 2), then the base point preserving κ-
invariant κb

M(f) of a κM-Brunnian link map f into M = Sn × Rm−n, 1 ≤
n < m ≥ 3, contains precisely as much information as the sequence {µ(s)

M (f)}s≥0

which starts with µM(f).

What is the geometric meaning of the remaining “higher µ-invariants” in this
sequence?

In order to answer this question, fix any orientation preserving smooth embed-
ding

η : Sn ×Bm−n ↪→ Rm (3.6)

where Bm−n is the compact (m−n)–dimensional unit ball with interior
◦
Bm−n ∼=

Rm−n. Thus η defines an inclusion of Sn×Rm−n into Rm, as well as a meridian

ηz : Sm−n−1 = {z} × ∂Bm−n η|
↪→ Rm

for every z ∈ Sn.
Now, given any link map in Sn×Rm−n, add s meridians ηz1 , . . . , ηzs (at pair-

wise distinct points z1, . . . , zs ∈ Sn). Up to link homotopy the resulting augmented
link map

f (s) =

 s∐
j=1

ηzj

q η ◦ f :
s∐

j=1

Sm−n−1 q
r∐

i=1

Spi −−−→ Rm , (3.7)

s ≥ 0, depends only on the link homotopy class of f in M .

Theorem 3.8. Assume |p| ≤ r(m − 2) and s ≥ 0. Let f : qSpi −→ M =
Sn × Rm−n be a κM–Brunnian and base point preserving link map.

If the augmented link map f (s) in Rm (cf. 3.7) is κRm–Brunnian (or, equiva-
lently, µ

(t)
M (f) = 0 for all t < s ), then for all γ ∈ Σs+r−2

µ
(s)
M,γ(f) := Hs,γ(κ′M(f)) = µRm,γ(f (s))
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(at least up to a fixed sign), and hence, in particular, µ
(s)
M (f) depends only on the

base point free link homotopy class of f in M .

Proof. Since f is κM–Brunnian, the product map f̂ (cf. 1.2) can be deformed
in a base point preserving fashion until it factors through a map of the form

F
(s)
s+r : S|p| −→ Sn ∨

r−1∨
Sm−1 ⊂ M − {y0

1 , . . . , y0
r−1} (↪→

η
Rm).

This extends to the new link map

F (s) = q F
(s)
i :

s∐
j=1

Sm−n−1 q
r−1∐
i=1

S0 q S|p| −→ Rm (3.9)

which involves also the meridians F
(s)
j = ηzj , j = 1, . . . , s (compare 3.7), and

F
(s)
s+i which map the base point ∗ of S0 to a suitable value in η(Sn × ∂Dm−n)

and the other point of S0 to y0
i , i = 1, . . . , r− 1. (Recall that 0-dimensional link

components present no problems in Rm, cf. [9]). If F (s) is κRm -Brunnian then
so is f (s), and the κ′Rm -invariants of F (s) and f (s) coincide (they vanish if and
only if F (s+1) or, equivalently, f (s+1) is κRm -Brunnian); on the other hand, since
F (s) is link homotopic to e∗((pinchs ∨ id) ◦ F

(s)
s+r), it follows from theorem 6.1 in

[9] that for all γ ∈
∑

s+r−2

hγ(κ′Rm(F (s))) = ±hγ((pinchs ∨ id) ◦ F
(s)
s+r) .

But these two expressions are µRm,γ(f (s) and Hs,γ(κ′M(f)), resp. We conclude,
in particular, that µ(s)(f) vanishes if and only if κ′Rm(f (s)) does (use (24) in [9]).
An induction over s now completes the proof. �

Recall that the base point free homotopy class κM(f) (cf. 1.2) is trivial precisely
if its base point preserving analogue κb

M(f) is.

Corollary 3.10. Assume p1, . . . , pr ≤ m− 2.
Then for all link maps f : q Spi −→ M = Sn × Rm−n the following two

conditions are equivalent:
(i) κM(f) is trivial (cf. 1.2) ; and
(ii) the component maps fi : Spi −→ M ∼ Sn are nulhomotopic, i = 1, . . . , r,

and the invariant κRm(f (s)) of the augmented link map f (s) is trivial for
every s ≥ 0.

Proof. Recall from [9], theorem 4.2, that the second part of condition (ii) holds if
and only if all (the consecutively defined) µRm–invariants of all sub-link maps of
f (s), s ≥ 0, vanish.

Clearly, (i) implies (ii). Assume that we have proved the converse inductively for
link maps with up to r−1 components. Then (ii) implies that f is κM–Brunnian
and, by theorem 3.8, even that κM(f) is trivial (use induction over s and theorem
3.5) �

Remark 3.11. If n ≥ 2, then M is 1–connected; thus κb
M(f) (and hence all

µ
(s)
M (f), when defined) are invariant even under base point free link homotopies of
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f (compare [10], § 3). Moreover, the higher µ-invariants µ
(s)
M (f), s ≥ 1, are in

general truly new and not already determined by the invariant µ
(0)
M (f) = µM(f) =

µ̃M(f) studied in [10]. This is illustrated e.g. by example 5.9 of [10] where f (1) is
a higher dimensional version of the classical Borromean link and µM(f) = 0 but
µ(1)(f) 6= 0.

If n = 1 and p1, . . . , pr ≤ m− 2, the base point preserving κ–invariant κb
M(f)

(cf. 3.2) of a κM -Brunnian link map f is precisely as strong as

µ̃M(f) := {h(g),γ(κ′M(f))} ∈
⊕

((g),γ)∈Zr−1×Σr−2

πS
|p|−(r−1)(m−2)−1

(see 2.24 as well as [10], 2.11 and 5.6) on one hand, and as the sequenceµ
(s)
M (f) ∈

⊕
γ∈Σr,s

πS
|p|−(r−1)(m−2)−1


s≥0

on the other hand (cf. 3.5). The transition to the base point free homotopy in-
variant κM(f) amounts to dividing out the translating action of Zr−1 on the
indices ((g), γ) of the factors in µ̃M(f) (see [10], 3.3 and 5.6). On the other hand,
µ

(s)
M (f)(= µRm(f (s)) is invariant under base point free link homotopies as soon

as all µRm(f (t)), t < s, are successively defined and trivial (or, equivalently, the
“preceding” higher µ-invariants µ

(0)
M (f), . . . , µ(s−1)

M (f) vanish; compare 3.8).

4. Connected sums and the extended definition of the invariants

It is often possible and useful to define κ- and µ-invariants for arbitrary (not
necessarily κ-Brunnian) link maps.

Assume that 1 ≤ p1, . . . , pr ≤ m − 3. Consider a smooth connected target
manifold of the form Mm = M ′×R where the base points y0

1 , . . . , y0
r lie in M ′×

{0}. Then there is a well-defined “connected sum” addition on the set BLM(p)(M)
of base point preserving link homotopy classes of link maps

f = qfj : qSpj −→ M : (4.1)

just deform the summands f+ and f− into M ′ × [0,∞) and M ′ × (−∞, 0],
resp., and form the obvious sum f+ + f−. If even M = M ′′ × R2 this operation
makes BLM(p)(M) into an associative commutative semigroup with unit (provided
π1(M) is abelian whenever min{pi} = 1). In this case successive addition of sub-
link maps of the form

fi1 q · · · q fis−1 q fis ◦ reflection , s < r,

(together with r − s constant component maps) allows us to “retract” (in a κ-
theoretical sense) arbitrary link maps to κ-Brunnian ones and then to apply our
invariants. For details compare [9], pp. 311–312.

We obtain in particular
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Proposition 4.2. Assume 1 ≤ p1, . . . , pr ≤ m− 3 and 1 ≤ n < m. Then there
are additive invariants

κ′M(f) ∈ π|p|

Sn ∨
r−1∨
j=1

Sm−1


and µs

M(f) := Hs(κ′M(f)), s = 0, 1, . . . , canonically defined for every base point
preserving link map f : qSpj −→ M = Sn × Rm−n. We have:

(i) if f is κM-Brunnian, these extended definitions agree with the previous ones
(cf. 3.2 and 3.4);

(ii) these invariants vanish whenever at least one of the components maps fj

of f is constant.

The case n = m−1 is taken care of by the isomorphisms BLM(p)(Sm−1×R) ∼=
BLM(p)((Sm−1 − {∗})× R) ∼= BLM(p)(Rm).

Recall also that in the simply-connected case n ≤ 2 base point preserving and
base point free link homotopy theory coincide here.

Next we extend theorem 3.8.

Theorem 4.3. Under the assumption of proposition 4.2 the identity

µ
(s)
M,γ(f) := Hs,γ(κ′M(f)) = µRm,γ(f (s))

holds (at least up to a fixed sign) for every link map f : qSpj −→ M = Sn×Rm−n

(not necessarily κ-Brunnian; but base point preserving if n = 1) and for all s ≥ 0
and γ ∈

∑
s+r−2.

Proof. Adding suitable link maps in M with at least one constant component
changes neither µ

(s)
M (f) nor µRm(f (s). Thus we may assume that f is κM -

Brunnian. In order to make also f (s) κRm-Brunnian we habe to add successively
further link maps in Rm of the form

s∐
j=1

ηzj q η ◦ f1 q · · · q η ◦ fr−1 q η ◦ fr ◦ (reflection)i , i = 0 or 1 ,

(cf. 3.7), but with at least one component ηzj
replaced by a constant map or,

equivalently, the remaining components deformed in such a way that they do not
intersect the slice η({zj}×Bm−n) ⊂ Rm (cf. 3.6). This changes neither µ

(s)
M (f) =

h ◦ (pinchs ∨ id)(F (s)
s+r) (cf. 3.9) nor µRm(f (s)), and as in the proof of 3.8 above

these two terms agree by the projectability theorem 5.2 in [9]. �

5. Linking coefficients and stable suspensions

Theorem 5.1. Assume that 1 ≤ p1, . . . , pr ≤ m − 3 and 1 ≤ n ≤ m − 1. Let
f = qrfj : qrSpj −→ M = Sn × Rm−n be a link map (base point preserving if
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n = 1) such that f1 q · · · q fr−1 is an embedding (and hence fr determines the
linking coefficient

λ(f) ∈ πpr

Sn ∨
r−1∨
j=1

Sm−pj−1

).

Then the following (systems of) invariants contain an equal amount of information:

(i) κ′M(f) ;
(ii) {µ(s)

M (f) = Hs(κ′M(f)}s≥0 ;
(iii) {Hs(λ(f))}s≥0 ;
(iv) the stable suspensions of all the Hilton components of λ(f) correspond-

ing to those basic Whitehead products which involve each meridian sphere
Sm−pj−1 precisely once, j = 1, . . . , r − 1.

Proof. It is a well-known consequence of the Thom isomorphism and Whitehead
theorems that the inclusion incl of the wedge

W := Sn ∨
r−1∨
j=1

S
m−pj−1
j (5.2)

(formed essentially by a core Sn × {∗} ⊂ Sn × Rm−n and by meridians to f :=
f1q· · ·qfr−1) into the link complement of f induces isomorphisms of homotopy
groups up to dimension m − 3 (compare also [10], 4.6). The Hilton components
mentioned above in (iv) constitute the π′′∗ (W )-part λ′′(f) of λ(f) := incl−1

∗ ([fr])
(cf. 2.9, 2.15, and diagramm 5.3 below).

After a suitable isotopy the images of f1, . . . , fr−1 intersect Sn × Rm−n−1 ×
[0,∞) in small disjoint half-spheres and we may assume that W lies in Sn ×
Rm−n−1 × [0,∞). Thus the link homotopy class [f ] is the sum (cf. § 4) of
[f1 q . . . ,qfr−1 q constant] with the class e∗(λ(f)) consisting of r− 1 standard
spheres in parallel hyperplanes in a suitable coordinate neighbourhood and of λ(f)
(cf. section 4 of [10]). Moreover the “retraction” procedure discussed in § 4 has
just the effect of replacing λ(f) by its π′∗(W )-part λ′(f) which involves each
meridian at least once (compare 2.3). By proposition 4.2 we conclude

κ′M(f) = κ′M ◦ e∗(λ(f)) = κ′M ◦ e∗(λ′(f)) .

For n ≥ 2 the proof of our theorem follows from diagram 5.3. Here Σw`∗,Σw`∗
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and H denote (corresponding) Hilton isomorphisms and Hopf homomorphisms;
moreover,

ks := s(n− 1) + (r − 1)(m− 2)− |p|+ pr + 1 .

Theorem 4.10 in [10] and results 2.11 and 2.12 above imply that actually

κ′M(f) = κ′M ◦ e∗(λ′′(f))

and that each part of diagram 5.3 commutes up to an automorphism of the target
group (which is compatible with the s-grading). In particular, for each s ≥ 0 the
invariants

µ
(s)
M (f) and Hs(λ(f)) = Hs(λ′′(f))

are related by an invertible matrix with integer coefficients.
A similar diagram, based on theorem 2.27, yields a proof of our claim also in the

case n = 1. �

In view of the last theorem nontriviality, surjectivity, or injectivity results for
the stable suspensions E∞ have corresponding implications for our invariants. In
particular, in the stable dimension range we obtain for the setting of 5.1

Corollary 5.4. If pr/2 ≤
∑r−1

j=1(m− pj − 2), then λ′′(f) (i. e. the π′′(W )-part
of the linking coefficient λ(f), cf. 2.9 and 2.15) is invariant under link homotopies
(assumed to preserve base points in case n = 1) and contains precisely as much
information as κ′M(f).

If n ≥ 2, then for every natural number s satisfying

pr

2
≤ s(n− 1) +

r−1∑
j=1

(m− pj − 2)
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the π′′(W ; s)-part (cf. 2.9) of λ(f) is a (base point free) link homotopy invariant
of f and precisely as strong as µ

(s)
M (f); moreover µ

(s)
M assumes all values in its

target group (cf. 3.4).

If f is homotopy Brunnian (i.e. every proper sub-link map is nulhomotopic),
then under certain dimension conditions the only relevant contribution comes from
λ′′(f) (cf. 2.28 and compare [10], 4.6).

Corollary 5.5. Assume p1, . . . , pr ≤ m− 3 and

|p| ≤ (r − 1)(m− 2) +
pr

2
and

|p| ≤ r(m− 2)− pj , j = 1, . . . , r − 1.

Then the (base point preserving) link homotopy class of a homotopy Brunnian link
map f :

∐r
j=1 Spj −→ M = Sn × Rm−n which embeds

∐r−1
j=1 Spj is completely

determined by κ′M(f) or, equivalently, by {µ(s)
M (f)}s≥0.

If n ≥ 2, this establishes an isomorphism from the semigroup of such classes
onto

⊕
s≥o (πS

|p|−s(n−1)−(r−1)(m−2)−1)
ur,s .

Note that the dimension conditions above are satisfied e.g. if p1 = · · · = pr =
m− 3 ≤ r.

Finally we prove our claims concerning the examples in the introduction. To
begin with, assume p1 = · · · = pr = m− 3 = 3.

Fix at first n ≥ 2 and put M = Mn. Then

�(f) =
(
{[f`]}, {(µ(0)

M ⊕ µ
(1)
M )(fk q f`)}, {µ(0)

M (fj q fk q f`)}
)

lies in (π3(Sn))r ⊕ (Z2 ⊕ πS
2−n)(

r
2) ⊕ (πS

0 )(
r
3); here the first µ

(0)
M measures just

the α-invariants (= generalized linking numbers in πS
1 = Z2) of all 2-component

sub-link maps of f , when included into R6 (cf. 3.8 and [10], 2.14).
After a suitable link homotopy we may assume that f is an embedding (add a

small copy of fj in a small 6-ball, j = 1, . . . , r, and apply the Whitney trick). As
in the proof of theorem 5.1 we obtain therefore

[f ] = [f1 q · · · q fr−1 q ∗] + e∗(λ1(f)) + e∗(λ2(f)) + e∗(λ′2(f)) + e∗(λ3(f))

where fr determines the linking coefficient λ(f) in

π3(Sn ∨
r−1∨

S2) ∼= π3(Sn)⊕
r−1⊕
k=1

(π3(S2)⊕ π3(Sn+1))⊕
⊕

1≤j<k<r

π3(S3)

and λ1(f), . . . denote its Hilton components corresponding to the basic Whitehead
products ι0, {ιk}, {[ι0, ιk]} and {[ιj , ιk]}, resp. Their values under e∗ are detected
by � (cf. proposition 2.11 and [10], theorem 4.10) and yield the contribution for
` = r. Note here that, given u ∈ π3(S2) ∼= Z, e∗(ιk(u)) lies in an open ball
B ⊂ Sn × R6−n ⊂ R6 and recall the isomorphism

α : LM3,3(R6)
∼=−−→ πS

1 = Z2
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(cf. [8], proposition F, or [4], theorem 1) which distinguishes e∗(ιk(u)) according
to the stable suspension (or, equivalently, parity) of u.

Induction over r completes the proof for n ≥ 2.
If n = 1, approximate f by a self-transverse immersion and add the nulhomo-

topic link maps ∗ q · · · q reflection ◦ fj q ∗ q · · · q ∗, j = 1, . . . r; then we can
cancel corresponding double points without complications arising from π1(M1).
The linking coefficient λ(f) of the resulting embedding lies now in the group

π3(S1 ∨
r−1∨

S2) ∼=
r−1⊕
k=1

⊕
g∈Z

π3(S2)

⊕
⊕

1≤j<k<r

 ⊕
(g,g′)∈Z2

π3(S3)

⊕ · · ·

with basic Whitehead products ιk,g (cf. 2.13 – 2.14), [ιj,g, ιk,g′ ] and [ιj,g, ιj,h], g <
h ∈ Z. The products of the last type can be neglected since e∗([ιj,g, ιj,h]) is trivial
by proposition 4.13 in [10]. Also the contributions coming from e∗ ◦ ιj,g factor
through the stable suspension homomorphism from π3(S2) to Z2 again and then
are detected by � (cf. theorem 2.27 and [10], theorem 4.10). So are the remaining
Hilton parts of λ(f) which yield 3-component sub-link maps of f . By induction
over r we see that each pair k < ` (and each triple j < k < `, resp.) of indices
between 1 and r contributes the direct summand

⊕
g∈Z

Z2

and
⊕

(g,g′)∈Z2

Z , resp.


to BLM3,...,3(M1). The inclusion M1 ⊂ M2 induces the identification of the
meridians ιj,g, g ∈ Z, with the single meridian ιj , j = 1, . . . , r, and hence the
summation homomorphisms on Z∞2 and Z∞. �

The claim in the second example in the introduction follows from theorem 5.1
above and from proposition 4.13 in [10].

Acknowledgement. It is a pleasure to thank Uwe Kaiser for stimulating discus-
sions.
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