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Fixed Points and Concidences in Torus Bundles

Ulrich Koschorke

ABSTRACT

Minimum numbers of fixed points or of coincidence components (realized by maps in given
homotopy classes) are the principal objects of study in topological fixed point and coincidence
theory. In this paper we investigate fiberwise analoga and determine both types of minimum
numbers for all maps between torus bundles of arbitrary (possibly different) dimensions over
spheres and, in particular, over the unit circle. Our results are based on a careful analysis of the
geometry of generic coincidencemanifolds and involvemainly the orbit behavior (e.g. the number
of odd order orbits) of a certain selfmap β on an abelian group. We carry out several explicit
sample computations, e.g. for fixed points in (S1)2-bundles. In particular, we obtain existence
criteria for fixed point free fiberwise maps.

1. Introduction and discussion of results

The principal question of topological fixed point theory can be phrased as follows (cf. [B],
p. 9).

Given a selfmap f of a (connected) topological space M, what is the minimum number
MF( f ) of fixed points among all the maps homotopic to f ?

Soon after the groundbreaking work of S. Lefschetz [L] appeared, the Danish mathemati-
cian J. Nielsen made a decisive contribution (cf. [N], p. 289): he introduced a very natural
equivalence relation among the fixed points of f . Counting the “essential” equivalence classes
one then obtains the Nielsen number N( f ) of f which is a lower bound for MF( f ). Actually
already in the early 1940’s it was known that these two numbers are equal whenever M
is a compact manifold of dimension m 6= 2 or a compact surface with nonnegative Euler
characteristic χ(M). So it came as a surprise when B. Jiang was able to prove in 1984/85
that MF( f ) −N( f ) can be strictly positive, cf. [Ji1], [Ji2] (and even arbitrarily large, cf. [Z],
[Ke], [Ji3]) for suitable selfmaps of any surface with χ(M) < 0.

It is natural to extend these studies in two directions.
First one may investigate the fixed point behaviour of fiberwise selfmaps of a fibration and,

in particular, those aspects which remain preserved under fiberwise homotopies. This was
done e.g. by A. Dold and resulted in the construction of his fixed point index (cf. [D]; see also
[Je1], [Je2]); different approaches were used more recently e.g. in [HKW], [GNS] and [KW].
Secondly we can extend the whole discussion to pairs of maps f1, f2 : M → N and their

coincidence sets

C( f1, f2) = {x ∈ M| f1(x) = f2(x)} . (1.1)

This stimulated an enormous amount of research in recent years (see e.g. [BGZ], [DG],
[GR1+2], [Ko1,...,5], [KR] and others) and includes the fixed point question as the special case
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where M = N and f2 is the identity map id.

Recently also coincidences of fiberwise maps

f1 , f2 : M //

pM
��?

??
??

??
? N

pN
����

��
��

��

B

(1.2)

have attracted increased attention. Here pM and pN are smooth fiber bundles (with typical
fibers FM and FN of dimensions m ≥ 0 and n ≥ 0, resp.) over the closed connected b-
dimensional manifold B, the total space M is also closed and the maps make the diagram
commute.
One of the principal problems is to determine the minimum number MCB(f1, f2) of

coincidence points among all the pairs ( f ′1, f
′
2) of maps such that f ′i is fiberwise homotopic

fi, i = 1, 2. Now, since we allow the dimension of M and N to differ, generic coincidence
sets may well be higher dimensional submanifolds of M, and MCB( f1, f2) need not be finite.
Thus it seems more interesting to study the (finite!) minimum number MCCB(f1, f2) of
pathcomponents of coincidence subspaces of M among all pairs fiberwise homotopic to
( f1, f2).
It is particulary important to knowwhen the minimum numbers vanish, i.e. when the maps

f1 and f2 can be deformed away from one another by fiberwise homotopies. In this case we
say that the pair ( f1, f2) is loose over B.
A strong tool is the normal bordism class

ω̃B( f1, f2) = [C, g̃, g] ∈ Ωm+b−n (EB( f1, f2); ϕ̃) (1.3)

of coincidence data introduced in [GK]. It generalizes (and often sharpens) the fixed point
index of classical Nielsen theory and the strongest (“universal”) version of Dold’s (fiberwise)
fixed point index (compare [GK]).
Our first two coincidence data are best described by the commuting diagram

EB( f1, f2) :=

{
(x, θ) ∈ M× P(N)

∣∣∣∣∣
pN ◦ θ ≡ pM(x);

θ(0) = f1(x),
θ(1) = f2(x)

}

pr

��
C

g̃

44iiiiiiiiiiiiiiiiiiiiiiiiiii

g=incl
// M

(1.4)

Here P(N) denotes the space of all continuous paths θ : [0, 1] → N ; moreover C is the
(generic) coincidence manifold (of a smooth transverse approximation of ( f1, f2) if necessary,
cf. [GK], 1.4), and g̃ lifts the inclusion map g in the Hurewicz fibration pr by putting

g̃(x) := (x, constant path at f1(x) = f2(x))

for x ∈ C. We obtain the third coincidence datum g by extracting the (stabilized) vector bundle
isomorphism

TC⊕ f ∗1 (TN)|C ∼= (TM⊕ p∗M(TB))|C

from the geometry of C ⊂ M and using it to express the stable normal bundle of the manifold
C as a pullback, via g̃, of the virtual vector bundle

ϕ̃ := pr∗(ϕ) (1.5)
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over EB( f1, f2) (where

ϕ := f ∗1 (TN)− TM− p∗M(TB) (1.6)

over M; for details see [GK], 1.4-1.11 or compare [Ko2]).

In general the pathspace EB( f1, f2) has a very rich topology, and the lifting g̃ captures
much more information than the inclusion map g (which reflects only “how the coincidence
manifold C lies in M“) does. Already the decomposition of EB( f1, f2) into its pathcomponents
induces the decomposition

C = ∐
Q∈π0(EB( f1, f2))

CQ (1.7)

into the closed manifolds CQ := g̃−1(Q) (which are almost all empty).

DEFINITION 1.8. We call a pathcomponent Q of EB( f1, f2) essential if the triple(
CQ, g̃|CQ, g|

)
of restricted coincidence data represents a nontrivial normal bordism class

in Ω∗(Q; ϕ̃|Q) .
The Nielsen number NB(f1, f2) is the number of essential pathcomponents of EB( f1, f2).
The geometric Reidemeister set RB(f1, f2) (and the Reidemeister number, resp.) of the

pair ( f1, f2) is the set π0 (EB( f1, f2)) of all pathcomponents of EB( f1, f2) (and its cardinality,
resp.).

Clearly NB( f1, f2) ≤ #RB( f1, f2) and the Nielsen number (but not necessarily the Reide-
meister number) is always finite. Moreover it can be shown that both numbers depend only
on the fiberwise homotopy classes of f1 and f2 and that

NB( f1, f2) ≤ MCCB( f1, f2) ≤ MCB( f1, f2) (1.9)

(compare [Ko2]).

EXAMPLE 1.10 : classical Nielsen fixed point theory in manifolds.
Here B consists only of one point and ( f1, f2) = ( f , id) where f is a selfmap of a connected
manifold M = N. There is a bijection from the classical (”algebraic“) Reidemeister set
π1(M)�∼ onto RB( f , id) = π0 (EB( f , id)) and

ω̃B( f , id) ∈ Ω0 (EB( f , id); ϕ̃) =
⊕

Q∈RB( f ,id)

Z

records the indices of all the Nielsen fixed point classes of f (cf. [Ko2]). In particular, our
definition (1.1) agrees with the classical definition of Nielsen and Reidemeister numbers (cf.
[B]). Similarly, MCB( f , id) is just the classical minimum number MF( f ) of fixed points (cf.
[Br]). �

In general the lower bound NB( f1, f2) fails often to be also equal to MCCB( f1, f2) (for
infinitely many counterexamples involving e.g. maps of the form f1, f2 : S

2n−1 → Sn see
[Ko2], 1.17). This lead to the construction of a ”nonstabilized“ version ω#

B( f1, f2) of our ω-
invariant and to a sharper Nielsen number NB

#( f1, f2) which agrees with the minimum
number MCCB( f1, f2) at least for all maps between spheres (cf. [Ko4]). However, already for
maps into real projective spaces new discrepancies appear which are related to subtle prob-
lems concerning nonvanishing Kervaire invariants or divisibility questions for Whitehead
products or Hopf invariants (cf. [KR]).
In contrast, in this paper we will study a setting where our original Nielsen number

NB( f1, f2) fully determines the minimum numbers of coincidence components or points.
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DEFINITION 1.11. A linear torus bundle is a smooth fiber bundle p : M → Bwith typical
fiber a torus Tm =

(
S1

)m
and stucture group GL (m,Z) (which acts in the standard fashion

on (Rm,Zm) and hence on Tm).

In the remainder of this paper pM : M → B and pN : N → Bwill always denote linear torus
bundles with typical fibers Tm and Tn, resp., of (possibly different) dimensions m, n ≥ 0, and
f1, f2 : M → N will be fiberwise maps. Every fiber of pN has a natural abelian Lie group
structure which makes it isomorphic to Tn and which we write additively. Similary we can
add and subtract fiberwise maps into N.
Choose isomorphisms Tm ∼= FM := p−1

M {∗} and FN := p−1
N {∗} ∼= Tn for the fibers over

some base point ∗ of B. When restricted to these fibers, f1 − f2 then induces the composite
homomorphism

L : Zm = π1 (Tm)
( f1|− f2|)∗ // π1 (Tn) = Zn (1.12)

between fundamental groups which extends to yield a linear map from Rm to Rn (also
denoted by L).

THEOREM 1.13. Assume that the base space B consists of a single point (of dimension
b = 0) or is the sphere Sb of dimension b ≥ 1. Then:
(i)

MCCB( f1, f2) = NB( f1, f2) and

MCB( f1, f2) =

{
NB( f1, f2) if NB( f1, f2) = 0 or m + b = n;

∞ else.

(ii) Assume in addition that b 6= 1. Then

NB( f1, f2) = |det (u1, . . . , un)|

where the column vectors u1, . . . , un of the indicated n × n-matrix generate L (Zm). In
particular, MCCB( f1, f2) (or, equivalently, MCB( f1, f2)) vanishes if and only if the linear
map L : Rm → Rn is not onto. Moreover the Reidemeister number is given by

#RB( f1, f2) = #
(
Z

n�L (Z
m)

)
=

{
NB( f1, f2) if NB( f1, f2) 6= 0;

∞ if NB( f1, f2) = 0.

It follows that the invariants MCB( f1, f2) and #RB( f1, f2) can only take the values
NB( f1, f2) and ∞; they agree precisely when

NB( f1, f2) 6= 0 = m + b− n

(i.e. in the only case when they are both finite).

For b = 0 (and b ≥ 2,resp.) all this will be proved in sections 2 (and 3, resp.) below.

Next let us focus on the remaining case B = S1 = I�0 ∼ 1 which turns out to be particu-
larly interesting. There exist invertible matrices AM ∈ GL (m,Z) and AN ∈ GL (n,Z) (which
induce automorphisms AM and AN , resp., of tori) such that up to fiberwise isomorphisms

M = (Tm × I) �(x, 1) ∼ (AM(x), 0) and

N = (Tn × I) �(u, 1) ∼ (AN(u), 0) .
(1.14)
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Let s0M (and s0N , resp.) denote the zero section of pM (and pN, resp.) defined by [t] → [(0, t)],
and put f0 := s0N ◦ pM.
Given a pair f1, f2 : M → N of fiberwise maps, it has the same minimum and Nielsen

numbers as the pair formed by f := f1 − f2 and f0. The fiberwise homotopy class of f is
fully determined by the linear map L : (Rm,Zm) → (Rn,Zn) (which reflects the behaviour of
f along a single ”vertical“ fiber, cf. 1.12) and the ”horizontal“ datum

[v] ∈ Z
n�

(
AN − id

)
(Z

n) (1.15)

(which classifies the section f ◦ s0M of pN , see section 4 below).
It is easy to see that

AN ◦ L = L ◦ AM. (1.16)

Thus AN preserves L (Zm) and every representative v of the class [v] defines a selfmap βv of
Zn�L (Zm) by

βv [u] :=
[
AN (u− v)

]
, u ∈ Z

n. (1.17)

The iterates of βv determine an action of the group Z whose orbits correspond bijectively
to the elements of the Reidemeister set RB( f1, f2) = π0 (EB( f1, f2)) (cf. 1.8). Indeed restrict
EB( f1, f2) to a single fiber FM of pM. Then βv describes the operation of π1

(
S1

)
= Z on

π0 (EB( f1, f2)|FM) = π0 (E( f1|FM, f2|FM)) ≈ Z
n�L (Z

m)

(compare [Ko2] 2.1, [Ko6] and section 4 below). Each pathcomponent Q of EB( f1, f2)
corresponds to the orbit which consists of the pathcomponents of the intersection Q ∩
(EB( f1, f2)|FM). The number of orbits of a given cardinality depends only on the class of v in
Zn�

(
AN − id

)
(Zn) (see also lemma 4.8 below).

THEOREM 1.18. For every pair of fiberwise maps f1, f2 : M → N over S1 the minimum,
Nielsen and Reidemeister numbers are given as follows.

Case 0: dimL (Rm) = n.Here MCB( f1, f2) = ∞ and

MCCB( f1, f2) = NB( f1, f2) = #RB( f1, f2)

equals the number of orbits of (the Z-action defined by) the selfmap βv on the finite set
Z

n�L (Z
m).

Case 1: dimL (Rm) = n− 1.Here

MCB( f1, f2) =

{
NB( f1, f2) if NB( f1, f2) = 0 or m < n;

∞ if NB( f1, f2) 6= 0 and m ≥ n.

Moreover AN induces an automorphism AN∗ of the quotient group

Z
n�

(
Z

n ∩ L (R
m)

)
∼= Z (1.19)

i.e. AN∗ = a · identitymap where a = ±1.
Subcase 1+ : a = +1. Here

MCCB( f1, f2) = NB( f1, f2) = |det (v,w1, . . . ,wn−1)|

where the vectors w1, . . . ,wn−1 ∈ Zn generate L (Zm). Furthermore

#RB( f1, f2) =

{
NB( f1, f2) if v /∈ L (R

m) ;

∞ else.
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Subcase 1−: a = −1. Here the Reidemeister set RB( f1, f2) is infinite. Furthermore the
quotient map Zn → Z defined by 1.19 induces the homomorphism

quot : Zn�
(
AN − id

)
(Zn) // Z2.

If quot ([v]) 6= 0, then ( f1, f2) is loose over S
1, i.e.

MCCB( f1, f2) = NB( f1, f2) = 0.

If quot ([v]) = 0, we may choose a representive v of [v] which lies in L (Rm). Then βv (cf. 1.17)
restricts to yield the selfmap βv| of the finite set

(
Zn ∩ L (Rm)

)
�L (Zm); moreover

MCCB( f1, f2) = NB( f1, f2)

equals the number of odd order orbits of (the Z-action determined by) βv|.

Case 2: dimL (Rm) ≤ n− 2.Here ( f1, f2) is loose and

MCB( f1, f2) = MCCB( f1, f2) = NB( f1, f2) = 0.

EXAMPLE 1.20 : m = n = 2, AM = AN =

(
0 −1
1 0

)
.

We identify z = (z1, z2) ∈ Z2 with the Gauß integer z1 + i z2 ∈ Z ⊕ i Z ⊂ C so that the
90◦ degree rotation AM = AN amounts to multiplication with the complex number i. Then
fiberwise maps f : M → N are classified (up to fiberwise homotopy) by pairs (L, [v])
where L : Z2 → Z2 is complex linear and the class [v] of v = (v1, v2) ∈ Z2 corresponds
to [v1 + v2] ∈ Z2 under the isomorphism Z2�(i− 1)Z2 ∼= Z2 (cf. 1.15, 1.16 and 4.6). At
the end of section 4 below we will prove

PROPOSITION 1.21. Given fiberwise maps f1, f2 : M → N, consider the classifying pair(
L, [v]

)
for f = f1 − f2. Write L(1) = k + i l and k2 + l2 = 4 q + r (with integers k, l, q, r

satisfying q ≥ 0 and r = 0, 1 or 2).
Then

MCCB( f1, f2) =





0 if k2 + l2 = 0;

q > 0 if k2 + l2 = 4 q > 0 and v1 6≡ v2(2);

q + 2 if k2 + l2 > 0 is even and v1 ≡ v2(2);

q + 1 else.

More precisely, if L 6= 0 , then the selfmap βv on G := Z2�L
(
Z2

)
has only orbits of order

1, 2 and 4, resp. Their numbers ν1, ν2 and ν4, resp., as well as ν := ν1 + ν2 + ν4 depend only
on the cardinality k2 + l2 of G and on the parity of v1 + v2 , and are listed in table 1.22.
In particular, all odd order orbits consist of a single fixed point. Their number ν1 has the

same parity as #G = k2 + l2 and can take only the values 0, 1 and 2.

k2 + l2 = 4 q > 0 k2 + l2 = 4 q + 1 k2 + l2 = 4 q + 2
v1 ≡ v2(2) 2, 1, q− 1; q + 2 1, 0, q; q + 1 2, 0, q; q + 2
v1 6≡ v2(2) 0, 0, q; q 1, 0, q; q + 1 0, 1, q; q + 1

TABLE 1.22. The numbers of orbits of βv with a given cardinality (1, 2, 4 or arbitrary, resp.)

Now let us replace L, v and the bundles M, N by L⊕ 0 : Z3 → Z3, (v, 0) ∈ Z3 and the
fiberwise product of M = N with an S1-bundle R over S1, resp. If R is the torus S1 × S1

(with a standard projection) we are in subcase 1+ and all Nielsen classes become inessential.
However, if R is the Klein bottle K (subcase 1-) precisely those (at most two) essential Nielsen
classes survive which correspond to odd order orbits - in spite of the extra space for possible
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deformations which the transition from N to N ×B K provides. In particular, f1 ⊕ 0 can be
deformed away from f2 ⊕ 0 if and only if k + l ≡ 0 6≡ v1 + v2 (2) or k = l = 0. �

We can avoid the many case distinctions and express the description of Nielsen numbers in
theorems 1.13(ii) and 1.18 in a way which may look more coherent and elegant (but which is
possibly not so useful for direct concrete calculations and also obscures a little the special role
which e.g. odd order orbits play).

DEFINITION 1.23.
(i) We call a map k : G → G′ between abelian groups affine (or affine isomorphism, resp.)

if it is the sum of a group homomorphism (or isomorphism, resp.) and a constant map.
(ii) Given a base point ∗ of B, consider pairs (G, β) where G is an abelian group and β is

an action of the group π1(B, ∗) on G by affine automorphisms. We call two such pairs
(G, β) and (G′, β′) equivalent if there exists an affine isomorphism k : G → G′ such that
k (β(y, g)) = β′ (y, k(g)) for all y ∈ π1(B, ∗) and g ∈ G.
The resulting set of equivalence classes is denoted byRB.

Clearly the number of orbits of β of a given cardinality depends only on the equivalence
class of (G, β), and so does the rank of G. In particular, there are welldefined functions

νodd , νeven , ν∞ : RB
// N ∪ {∞} (1.24)

which count all orbits of odd, even and infinite order, resp. When we ”reduce mod ∞“, i.e.
when we replace the value ∞ by 0 while leaving all finite values unchanged, we obtain the
functions

ν′odd , ν′even , ν′∞ : RB
// N . (1.24’)

Observe that direct sumsmake RB,∗ into a monoid. Note also that changes of basepoints in
B lead to isomorphism (of fundamental groups and hence of these monoids) which preserve
orbit numbers etc. Thus we will often drop the basepoints from our notation.
Now, given fiberwise maps f1, f2 (cf. 1.2) between torus bundles, the composite of

projections

pM ◦ pr : EB( f1, f2) // B (1.25)

(cf. 1.2 and 1.4) is a Serre fiber map with fiber E( f1|FM , f2|FM) . The end of the resulting fiber
homotopy sequence

. . . // π1(B)
β

//___ π0 (E( f1|FM, f2|FM)) // π0 (EB( f1, f2)) // 0

leads to a description of the elements in the geometric Reidemeister set RB( f1, f2) =
π0 (EB( f1, f2)) (cf. 1.8) as orbits of a group action β on the geometric Reidemeister set of
the restricted pair ( f1|FM, f2|FM). Since the fiber FN has an abelian fundamental group the
algebraic interpretation of this Reidemeister set yields a group structure (see also [Ko6]). We
obtain an isomorphism

π0 (E( f1|FM , f2|FM)) ∼= Z
n�L (Z

m)

(cf. 1.12) and a resulting group action (also denoted by β) of π1(B) on Zn�L (Zm) by affine
isomorphisms.
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DEFINITION 1.26. Given a pair ( f1, f2) of fiberwise maps between linear torus bundles
over a closed connected manifold B, we define its Reidemeister invariant ̺B( f1, f2) ∈ RB to
be the equivalence class of the pair

(
G := Zn�L (Zm) , β

)
.

The Reidemeister invariant is independent of all choices made in its construction and
depends only on the fiberwise homotopy classes of f1 and f2. Furthermore it is compatible
with the natural products (fiberwise products on the one hand and direct products on the
other hand).
We obtain ̺B( f1, f2) by carrying out the Reidemeister operation of π1(M) on π1(FN) (cf.

[GK], definition 3.1) in two steps:
(i) First let the ”vertical“ part of π1(M) (i.e. the image of π1(FM) ) act on π1(FN); the

resulting ”partial“ orbit set is G.
(ii) Then β captures the remaining ”horizontal“ action; the elements in a given orbit of

β correspond to the pathcomponents of EB( f1, f2)|FM which lie in the same given
pathcomponent of EB( f1, f2).

Thus the orbit numbers ν′odd, ν′even and ν′∞ of ̺B( f1, f2) do not seem to involve ω̃ -
invariants and essentiality questions (cf. 1.8) at all but just reflect the crudest aspects of how
the total space of pM ◦ pr (cf. 1.25) intersects one of the fibers. So the following result may
come as a surprise.

THEOREM 1.27. If B is a sphere (of any positive dimension) or a point we have for every
pair f1, f2 : M → N of fiberwise maps between linear torus bundles over B

MCCB( f1, f2) = NB( f1, f2) = νB (̺B( f1, f2))

where

νB(G, β) :=

{(
ν′odd + ν′even + ν∞

)
(G, β) if rank(G) ≤ rank (π1(B)) ;

0 else.

The minimum number MCB( f1, f2) depends only on the Reidemeister invariant ̺B( f1, f2)
and on the difference of the dimensions of M and N. Moreover

#RB( f1, f2) = (νodd + νeven + ν∞) (̺B(G, β)) .

QUESTION 1.28. Is there a comparable result for other base manifolds B (where νB may
also involve the dimension and further aspects of B)?
When (and how) can we conclude just from the topological properties of EB( f1, f2) and of

pM ◦ pr (cf. 1.25) whether a given pathcomponent Q of EB( f1, f2) is essential? �

EXAMPLE 1.29. If M = N is the fiberwise product of at least two Klein bottles over S1 (i.e.
AM = AN = −id on Rn, n ≥ 2) and if f1 and f2 are both fiberwise zero (i.e. f1 = f2 = f0),
then νodd, νeven and ν∞ , resp., map the Reidemeister invariant ̺B( f1, f2) = [(Zn , −id)] to
1, ∞ and 0, resp.; therefore

(
ν′odd + ν′even + ν∞

)
(G, β) = 1 6= NB( f1, f2) = MCCB( f1, f2) = 0.

Thus the case distinction in the definition of νB in 1.27 seems to be unavoidable. �

Theorems 1.13, 1.18 and 1.27 follow from the discussions in sections 3, 4 and 6 below.
These involve very heavily the invariant ω̃B( f1, f2) (i.e. a detailed analysis of the coincidence
submanifold C in the domain M) and, in the process, the kernel of L. So it is all the more
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striking that the final results are expressedmainly in terms of data related to the target bundle
N such als the cokernel of L, whereas M gets litte visibility and ker L plays no role at all.

Next consider the mod 2 Hurewicz homomorphism

µ2 : Ω∗ (EB( f1, f2); ϕ̃) → H∗ (EB( f1, f2);Z2) (1.30)

which takes the normal bordism class ω̃B( f1, f2) = [C, g̃, g] to the image of the fundament
class of C under the induced homomorphism g̃∗ and forgets the ”twisted framing“ g entirely.
In general coincidence theory often this means a big loss of information: singular homology
(even with twisted integer coefficients) is usually far too weak to capture all essential
geometric aspects (see e.g. the discussion following of (3.4) in [Ko1] for examples where
µ (ω̃B( f1, f2)) is trivial but g allows decisive and very subtle distinctions).
However in the setting of torus bundles we encounter a very unusual phenomenon: in

sufficiently many cases g̃ turns out to be a homotopy equivalence. This is crucial in the proofs
of theorems 1.13 and 1.18 and implies the following side result (cf. 3.2, 5.9 and 6.14 below).

THEOREM 1.31. For all fiberwise maps f1, f2 between linear torus bundles over B =
{point} or B = Sb, b ≥ 1, we have: a pathcomponent Q of EB( f1, f2) is essential if and only if

µ2

([
CQ, g̃|CQ, g|

])
= g̃∗

([
CQ

])
∈ Hm+b−n (Q;Z2)

does not vanish (compare definition 1.8).

Thus we do not need the full power of normal bordism techniques in our special setting
but homological methods suffice here to determine Nielsen (and hence minimum) numbers.
As another illustration of this point let us mention the following criterion (cf. 6.13 below):
a pathcomponent Q of EB( f1, f2) is essential in subcase 1− of theorem 1.18 if and only if the
projection to B = S1 induces an epimorphism from H1 (Q;Z2) to H1

(
S1;Z2

)
.

In section 5 below we will present a technique to compute the relevant normal bordism
and mod 2 homology groups when B = S1. This allows us also to compare ω̃B( f1, f2) to the
seemingly less complicated invariant

ωB( f1, f2) = pr∗ (ω̃B( f1, f2)) ∈ Ωm+1−n (M; ϕ) (1.32)

which does not involve the pathspace EB( f1, f2) (cf. 1.4 and 1.6). It turns out that
µ2 (ω̃B( f1, f2)) ∈ Hm+1−n (EB( f1, f2)) is not onlymuch stronger than µ2 (ωB( f1, f2)) but often
also easier to work with since it contains all the relevant information but no unnecessary
redundancies.

EXAMPLE 1.33 : Fixed point theory over S1.
Here we assume that pM = pN : M = N → S1 . The coincidence questions concerning a
pair of fiberwise maps f1, f2 : N → N amount to fixed point questions for f1 − f2 + id.
In turn, let us study the fixed points of a fiberwise selfmap f on N or, equivalently, the

coincidences of ( f − id, f0) . If we fix a fiber of N and identify its fundamental group with Zn,
the restriction of f induces a homomorphism f |∗ : Zn → Zn (cf. 1.12) (which extends to a
linear selfmap of Rn). We have to apply theorem 1.18 to L := f |∗ − id and to the residue class
[v] ∈ Zn�

(
AN − id

)
Zn determined by the section f ◦ s0M (cf. 1.15). Since m = n and AM =

AN =: A the case distinctions in 1.18 can be expressed also in terms of the eigenspace W+1

(for the eigenvalue +1) of f |∗ : Rn → Rn: the cases are numbered by the dimension ofW+1
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(which equals the codimension of L (Rn) in Rn); in case 1 the subcases are distinguished by
the determinant of the restricted endomorphism A| = a · id on the lineW+1 of eigenvectors.
However, when calculating orbit numbers - and hence minimum numbers of (pathcom-

ponents of) fixed points - we should rather focus our attention on the image of L and its
complement.
For an illustration assume m = n = 2 and consider case 1 which is most interesting.

Here it is very appropriate to use the coordinate system of Z2 (and R2) determined by
a choice of integer basis vectors y1, y2 ∈ Zn such that y1 generates the intersection of Z2

with the line L
(
R2

)
= ( f |∗ − id)

(
R2

)
, and y2 realizes the minimal strictly positive distance

from this line. Then the gluing matrix A, a shift vector v and a generator of the group
L

(
Z

2) = ( f |∗ − id)
(
Z

2
))

, resp., take the form

A = a ·

(
det A ∗

0 1

)
, v =

(
v1
v2

)
and

(
±q
0

)
, resp.,

where a, and det A are equal to +1 or −1 and q denotes the order of the torsion subgroup(
Z2 ∩ L

(
R2

))
�L

(
Z2

)
of G = Z2�L

(
Z2

)
.

If in addition a = −1 and v2 ≡ 0(2) we can (and will) choose a representative v of [v] ∈
Z2�

(
AN − id

)
Z2 such that v2 = 0. Then βv| (cf. 1.18) is the affine selfmap on Zq defined

by

βv| ([k]) =
[
−(det A) · (k− v1)

]
;

thus βv| is an involution (whose only odd order orbits consist of fixed points) or a translation
(all of whose orbits have order q/gcd(q, v1)). Therefore theorem 1.18 implies the following as
an easy special case.

THEOREM 1.34. Let the torus bundle N over S1 be determined by the gluing matrix A ∈
GL(2,Z). Given a fiberwise map f : N → N, let f |∗ denote the (linear) endomorphism of
Z2 (and, by extension, of R2) induced on the fundamental group of a single fiber of N. LetW+1

be the (real) eigenspace of f |∗ with eigenvalue +1. Recall that MCB( f , id) is the (fiberwise
version of the) classical minimum number of fixed points of the map f within its (fiberwise)
homotopy class. Similarly, MCCB( f , id) is the minimum number of pathcomponents of fixed
point subspaces of N within the fiberwise homotopy class of f .
Case 0: dimW+1 = 0. Here MCB( f , id) = ∞. In contrast, MCCB( f , id) is the (finite) number
of all orbits of the affine selfmap βv on Z2�( f |∗ − id) Z2 (cf. 1.17).
Case 1: dimW+1 = 1. Here

MCB( f , id) =

{
0 if MCCB( f , id) = 0;

∞ else.

If A restricts to the identity map id on the eigenlineW+1, then

MCCB( f , id) = q · |v2| .

If A|W+ = −id and v2 is odd, then

MCB( f , id) = MCCB( f , id) = 0.
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If A|W+ = −id and v2 = 0, then the value of MCCB( f , id) depends on q, v1 and the
determinant of A as follows.

MCCB( f , id) =





r := gcd(q, v1) if det A = −1 and
q
r is odd;

2 if det A = +1 and q ≡ v1 ≡ 0(2);

1 if det A = +1 and q is odd;

0 else.

Case 2: dimW+1 = 2. (i.e. f |∗ ≡ id). Here

MCB( f , id) = MCCB( f , id) = 0.

In particular, MCB( f , id) can take only the values 0 or ∞ whereas MCCB( f , id) or, equiv-
alently, the Nielsen number NB( f , id) seems to capture the fixed point behavior of f (up to
homotopy) very well.

COROLLARY 1.35. There is a fiberwise homotopy from f to a fixed point free map if and
only if f |∗ ≡ id or else the eigenspace W+1 of f |∗ has dimension 1 and one of the following
conditions hold:
(i) A|W+1 = id and v2 = 0;
(ii) A|W+1 = −id and v2 is odd;
(iii) A|W+1 = −id, v = (v1, 0), det A = 1 and q ≡ 0 6≡ v1(2);
(iv) A|W+1 = −id, v = (v1, 0), det A = −1 and q is an evenmultiple of the greatest common

denominator r of q and v1.

This should be compared to the work of D. Gonçalves, D. Penteado and J. Vieira (cf. [GPV]).

NOTATIONS AND CONVENTIONS 1.36.
We call a map f : M → N fiberwise if pN ◦ f = pM (cf. 1.2). This agrees with the use of the
term ”fiber-preserving“ in [GK] (but not in [BS] and [Lee], where it is only required that
pN ◦ f = f ′ ◦ pM for some selfmap f ′ of the base B).
A pair ( f1, f2) of fiberwise maps is called fiberwise loose (or loose over B or B-loose , cf.

[GK]) if f1, f2 can be deformed through fiberwise maps so as become coincidence free.
The group compositions in tori and e.g. in the group of fiberwise maps between linear torus

bundles are written as additions.

qk : Rk // Tk = Rk�Zk, k ≥ 0,

denotes the standard covering (or quotient) map. Elements in Euclidean spaces (and their
images in tori, resp.) are written x, y, u, v, w, . . . (and x = qk(x), y, u, v, w, . . ., resp.). A
homomorphism L between tori determines the linear lifting L between Euclidean spaces
(which preserves the integer lattice) and vice versa. Our notation makes no destinction
between such a lifting L : Rm → Rn and its restriction L : Zm → Zn.
The tildas in ω̃, g̃, ϕ̃, . . . refer to liftings in the fibration pr (cf. 1.4).

All homology groups have coefficients in Z2. The fundamental class of a closed manifold C
(and the unit interval, and references to publications, resp.) are denoted by [C] (and I = [0, 1],
and e.g. [BGZ], resp.). Otherwise square brackets stand for equivalence classes (w.r. to an
equivalence relation which should be obvious from the context), e.g. [ x] = qk(x) = x and
[x, t] = equivalence class of the pair (x, t).
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#S (and id, and det, resp.) denote the (integer or infinite) number of elements in a set S (and
the identity map, and the determinant at hand, resp.).

2. Coincidences in tori

In this section we analyze the case B = {point} (where it is customary to drop the subscript
B from the notations).
Using the group addition in tori we can simplify our exposition significantly. Given

continuous maps f1, f2 : T
m → Tn, note that the pairs ( f1, f2) and ( f := f1 − f2, 0 ≡ f2 − f2)

have the same Nielsen, Reidemeister and minimum numbers. Moreover these invariants and
further coincidence data are compatible with continuous deformations (see [Ko2]). E.g. we
may ”straighten“ f by the canonical homotopy from f to fL, f (0) := L + f (0) (where the Lie
group homomorphism L is extracted from the induced homomorphism

L : Zm = π1 (Tm)
f∗

// π1 (Tn) = Zn (2.1)

as in 1.12. In order to obtain the canonical homotopy pick two liftings f , f L, f (0) : Rm → Rn

such that f (0) = f L, f (0)(0) and project the affine deformation t f + (1− t) f L, f (0) back to the
torus Tn).
Thus it suffices to consider only pairs of maps of the form ( f , f0 ≡ 0) where f has been

straightened.
First we want to understand the pathspace

E( f , 0) = {(x, θ) ∈ Tm × PTn | θ(0) = f (x), θ(1) = 0} (2.2)

and its projection pr to Tm (cf. 1.4).

THEOREM 2.3. Consider the map

f = L + v : Tm → Tn, m, n ≥ 1,

where L is a homomorphism of tori (with linear lifting L : (Rm,Zm) → (Rn,Zn)) and v ∈ Tn.
Then
(i) There is a homotopy equivalence

e ◦ j : ∐
[u]∈Zn�L(Zm)

ker L�
(
Z

m ∩ ker L
)
→ E( f , 0).

(ii) Assume that v ∈ L (Tm). Then this homotopy equivalence induces a bijection from the
Reidemeister set Zn�L (Zm) onto the set π0 (E( f , 0)) of pathcomponents of E( f , 0).
Let E′( f , 0) denote the union of those pathcomponents of E( f , 0) which correspond to
elements in

(
L (Rm) ∩ Zn

)
�L (Zm). Then the map

g̃ : C( f , 0) → E′( f , 0)

which sends x to (x, constant path at 0) is a homotopy equivalence. (In fact, g̃ is a home-
omorphism onto a strong deformation retract of E′( f , 0).) Clearly, when we compose g̃
with the projection pr (compare 1.4), we obtain the inclusion of the coincidence manifold
C( f , 0) into Tm.

Proof. Call two elements (x, u) and
(
x′, u′

)
of Rm × Zn equivalent if

(
x′, u′

)
=(

x + y, u + L (y)
)
for some y ∈ Zm; let DL denote the resulting quotient set.
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Then there are homotopy equivalences

DL := (Rm × Zn) �∼
e // E( f , 0)
η

oo (2.4)

which depend only on the choice of an element v ∈ Rn satisfying qn (v) = v (if v ∈ L (Tm)
we will always choose v to lie in L (Rm)). Here we define

e ([x, u]) :=
(
qm(x), qn ◦

(
straight path from L x + v− u to 0

))
(2.5)

(compare 1.36); in turn

η (qm(x), θ) :=
[
x, L x + v− θ(0)

]

where θ lifts the path θ to R
n such that θ(1) = 0 (compare 2.2). Clearly η ◦ e = identity map id;

moreover e ◦ η ∼ id since every path in Rn can be deformed linearly into the straight path
with the same endpoints.
Next note that the obvious map (induced by the second projection)

r : DL → Z
n�L (Z

m) , (2.6)

together with e and η (cf. 2.4), can be used to label he pathcomponents of E( f , 0). Indeed,
given u ∈ Zn, we have the homeomorphism

ju : R
m�

(
Z

m ∩ ker L
) ∼= // r−1 {[u]} (2.7)

which maps [x] to [x, u]. Composed with the obvious inclusion this yields the homotopy
equivalence

ju| :
(
ker L

)
�

(
Zm ∩ ker L

) ∼ // r−1 {[u]}

of pathconnected spaces. If we pick a representative u for every class [u] ∈ Zn�L (Zm) we
obtain the homotopy equivalence j := ∐

[u]

ju| which, when composed with e (cf. 2.5), leads to

the first claim of our theorem.
For the rest of the proof consider the special case where v happens to lie in the image

of L and where we choose v in L (Rm). Pick x0 ∈ Rm such that L (x0) = −v. Thus the
corresponding point x0 := qm (x0) ∈ Tm lies in the coincidence set C( f , 0). The fiber inclusion

pr−1 ({x0}) = {(x0, loops at 0)} ⊂ E( f , 0),

together with r ◦ η (cf. 2.4 and 2.6) induces the composite map

Zn = π1 (Tn; 0) // π0 (E( f , 0))
(r◦η)∗ // Zn�L (Zm)

which takes u ∈ Zn to the class [u] in the quotient group. This shows that r ◦ η yields the
usual identification of π0 (E( f , 0)) with the Reidemeister set R ( f , 0; x0) = Zn�L (Zm) (cf.
[Ko2], 2.1). It follows from the definition of η that the bijection (r ◦ η)∗ is independent of the
choice of x0.
Furthermore since

f ◦ qm = qn ◦
(
L + v

)
: R

m → Tn

we have

C( f , 0) = qm
(
L
−1

(Z
n − v)

)
=

⋃

u∈Zn∩L(Rm)

qm
(
L
−1

({u− v})
)
.

Given elements u, u′ ∈ Zn ∩ L (Rm), their contributions to this union are equal or disjoint
according as they agree modulo L (Zm) or not.
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Now choose a direct sum decomposition Rm = K ⊕ ker L and use it in order to deform

Rm along K onto any given affine subspace of the form L
−1

({u− v}) where u ∈ Zn ∩
L (Rm). The resulting deformations are compatible with the translation by any vector y ∈ Zm.
Moreover

ju+L(y) ([x + y]) =
[
x + y, u + L y

]
= [x, u] = ju ([x])

for all x ∈ Rm (compare 2.4 and 2.7). It follows that

qm
(
L
−1

({u− v})
)

∼= L
−1

({u− v}) �
(
Z

m ∩ ker L
)

gets mapped homomorphically, via ju (and e ◦ ju , resp.), onto a strong deformation
retract of the pathcomponent, labelled by [u], of DL (and of E( f , 0), resp.). The deformation
is independent of the representative u of the class [u] ∈ Zn�L (Zm); it depends only on
the choice of the complement K of ker L in Rm. Clearly e ◦ ju ([x]) = g̃ (qm(x) for all x ∈

L
−1

({u− v}) (cf. 2.5 and 2.7). This completes the proof of theorem 2.3.

The next result, together with the discussion of 2.2, proves theorem 1.13 of the introduction
in the case B = {point}.

COROLLARY 2.8. We may choose integer vectors u1, . . . , un ∈ Zn which generate L (Zm).
Then

MCC( f , 0) = N( f , 0) = |det (u1, . . . , un)| ;

this number vanishes (or, equivalently, the pair ( f , 0) is ”loose“, cf. [Ko2], definition 1.1) if and
only if L : Rm → Rn is not surjective.
Moreover

MC( f , 0) =

{
N( f , 0) if N( f , 0) = 0 or m = n;

∞ else;

and

#R( f , 0) = #
(
Z

n�L (Z
m)

)
=

{
N( f , 0) if N( f , 0) 6= 0;

∞ if N( f , 0) = 0.

Proof. If L (Rm) 6= Rn we may move v slightly away from L (Tm) so that C( f , 0) =
(L + v)−1 (0) is empty. Then the pair ( f , 0) is loose and its Nielsen and minimum numbers
vanish. Moreover Zn�L (Zm) contains an infinite factor (compare 2.3(ii)).
Thus assume that the rank of L is n. Then the map ( f , 0) : Tm → Tn × Tn is smooth and

transverse to the diagonal △ as required in 1.3 and 1.4 (see also [Ko2]). Moreover, since the
coincidence datum

g̃ : C( f , 0) → E′( f , 0) = E( f , 0)

(cf. 1.4) is a homotopy equivalence (cf. 2.3) each element in the geometric Reidemeister set
π0 (E( f , 0)) corresponds to an essential and pathconnected part of the coincidence mani-
fold C( f , 0) = f−1(0). (Clearly, essentiality is detected here by (m − n)-dimensional mod 2
homology.) Thus the pair ( f , 0) realizes - within its homotopy class - the minimum number of
coincidence components (and, if m = n, also of coincidence points) and this agrees with the
Nielsen and Reidemeister numbers.
Suppose MC( f , 0) is finite, i.e. there exists a homotopy from ( f , 0) to some pair of maps

( f ′, f ′′) which have only finitely many coincidence points. According to ([Ko2], 3.2, 3.3 and
the discussion following 4.4) such a homotopy induces an isomorphism between the framed
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bordism groups (and the homology groups with coefficients in Z2, resp.) of E( f , 0) and of
E( f ′, f ′′) which preserve the ω̃-invariants (and µ2 (ω̃), cf. 1.30, resp.). This cannot happen if
m > n. Indeed, each component of C( f , 0) is an (m − n)-dimensional torus and in view of
theorem 2.3(ii) above we have

µ2 (ω̃( f , 0)) = (1, . . . , 1) ∈ Hm−n (E( f , 0);Z2) =
⊕

π0(E( f ,0))

Z2.

In contrast ω̃( f ′, f ′′) can be represented by “small” generic coincidence manifolds near
the finite subset C( f ′, f ′′) of Tm, together with “small” (i.e. nearly constant) maps; thus
µ2 (ω̃( f ′, f ′′)) = 0.
Since L (Zm) is a subgroup of Zn there exists a system {u1, . . . , un} of generators of L (Zm).

The resulting n × n-matrix U has a trivial determinant if rank L < n. Otherwise
∣∣det

(
U

)∣∣
counts the points u ∈ Zn which lie in the paralleliped {u = ∑ ti ui | 0 ≤ ti < 1, i = 1, . . . , n};
but these points form a system of representatives of the classes [u] ∈ Zn�L (Zm) (compare
also 1.13(ii)).

3. Straightening fiberwise maps in linear torus bundles

For the remainder of this paper let M and N be linear torus bundles with fiber dimensions
m and n, resp., over a smooth closed connected manifold B of dimension b. Any fiberwise
map f : M → N determines the section s f := f ◦ s0M of pN (the image of the zero section of
pM) and the fiberwise constant map s f ◦ pM.

PROPOSITION 3.1. The following operations do not change the Nielsen, Reidemeister or
minimal numbers MCCB andMCB.
(i) Replacing a pair ( f1, f2) of fiberwise maps from M to N by the pair which consists of

f := f1 − f2 and f0 := s0N ◦ pM.
(ii) Replacing f by a map f ′ which is fiberwise homotopic to f . This can be done e.g. by

“straightening” f fiberwise (cf. section 2) while keeping s f = f ◦ s0M unchanged; when
restricted to any fiber, then f ′ − s f ◦ pM is a group homomorphism of tori. Also any
deformation of the section s f determines a fiberwise homotopy of straightened maps.

(iii) Composing f with isomorphisms of linear torus bundles.

It follows that we have to prove theorems 1.13, 1.18,1.27 and 1.31 only for pairs of the form
( f , f0) where f is already “straightened”.

Proof. Each of these operations induces a fiberwise homotopy equivalence (or even
a homeomorphism) between the pathspaces EB(·, ·) of the pairs in question as well as
an isomorphism between their normal bordism groups which preserves the ω̃-invariants
(compare sections 3 and 4 in [Ko2]). Note that here the coefficient bundle ϕ (cf. 1.6) is a
pullback of a virtual vector bundle over B which depends only on M and N (and not on
f1).

PROPOSITION 3.2. Let f : M → N be a fiberwise map between trivial linear torus bundles
and assume that the section s f = f ◦ s0M is fiberwise homotopic to the zero section s0N of N.
Let f |, 0 : Tm → Tn denote the restrictions of f , f0 to the fibers over some basepoint ∗ of B.
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Then the pairs ( f , f0) and ( f |, 0) have the same Nielsen, Reidemeister and minimum
numbers MCCB (which are therefore known by corollary 2.8). Moreover we have

MCB( f , f0) =

{
NB( f , f0) if NB( f , f0) = 0 or b = m− n = 0;

∞ else.

If L (Rm) = Rn (cf. 1.12) and Q ∈ π0 (EB( f , f0)) , then the mod2 homology class
g̃∗

([
CQ

])
(cf. 1.8 and 1.31) does not vanish and hence Q is essential.

Proof. In view of proposition 3.1 we need to consider only the case where

f = L× id : M = Tm × B → N = Tn × B

and L is a Lie group homomorphism. Then each pathcomponent of EB( f , f0) contains an
element of the form (x0, θ) where θ is a closed loop at x0 = 0 in the fiber Tn over ∗ ∈ B. This
inclusion induces a bijection from the orbit set of the Reidemeister operation of π1(M) =
π1(B)⊕Zm on π1 (Tn) = Zn onto the geometric Reidemeister set π0 (EB( f , f0)). Since s f ≡ 0
the factor π1(B) acts trivially on Zn and we can identify the Reidemeister sets both of ( f , f0)
and of ( f |, 0) with the quotient group Zn�L (Zm).
If the linear lifting L : Rm → Rn of L is surjective we have only essential Reidemeister

classes and each Nielsen class CQ is connected (being the product of an affine subtorus of
Tm with B or {∗}, cf. corollary 2.8 and its proof). Thus

MCCB = NB = #RB = #
(
Z�L (Z

m)
)

both for ( f , f0) and ( f |, 0). Moreover MCB( f , f0) is infinite whenever N( f , f0) 6= 0 and B 6=
{∗} since then each Nielsen class must project onto B.
If L (and hence L) is not surjective then f can be pushed away from f0(M) = {0} × B and

MCB( f , f0) = MCCB( f , f0) = NB( f , f0) = 0

but RB( f , f0) = Zn�L (Zm) is infinite.

Propositions 3.1 and 3.2 imply the claims of theorems 1.13, 1.27 and 1.31 as far as they
concern the case B = Sb, b ≥ 2. Indeed, here the fiber bundles M and N must be trivial
since their gluing maps from the (connected!) equator Sb−1 into the discrete structure group
GL (k,Z), k = m or n, are constant. Thus any section corresponds to a (nullhomotopic!) map
from Sb to the torus Tk.
Furthermore if B = S1 and dim

(
L (Rm)

)
≤ n − 2, the claims of theorems 1.13 and 1.18

follow from a simple transversality argument. Indeed, we may deform s f into a section of
pN which does not intersect the (at least 2-codimensional) image of the straightened fiberwise
map determined by L and s0N . This yields a homotopy which moves f entirely away from f0.
Thus the Nielsen and minimum numbers of the pair ( f , f0) vanish.
The remaining claims of theorems 1.13, 1.18 and 1.27 will be established in sections 4 and 6

below. �

4. Torus bundles over S1, and related pathspaces

In this section we classify fiberwise maps f1, f2 between linear torus bundles over the circle
and deduce simple descriptions of the homotopy type of the pathspace EB( f1, f2) which is of
central importance in Nielsen theory. Surprisingly, the coincidence map g̃ (cf. 1.4) turns out to
yield homotopy equivalences in a significant number of cases.
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Given m, n ≥ 0, fix invertible matrices AM ∈ GL (m,Z) and AN ∈ GL (n,Z) with integer
coefficients and consider the resulting linear torus bundles M and N (cf. 1.14) over the base
manifold B = I�0 ∼ 1 (which we identify with the unit circle S1 via [t] ↔ e2πit).
For every integer vector v ∈ Zn we define the section

sv : S1 // N (4.1)

of pN (cf. 1.2) by

sv ([t]) = [qn (t v) , t] , t ∈ I.

PROPOSITION 4.2. The assignment

v // sv

induces a group isomorphism σ from Zn�
(
AN − id

)
(Zn) onto the group of homotopy

classes of sections of pN.

Proof. First observe that this construction yields a welldefined map. Indeed, given vectors
v and w in Zn, the homotopy

S ([t], τ) :=
[
qn

(
t (v+ τ w) + (1− t)τ AN w

)
, t

]
, t, τ ∈ I,

of sections starts from sv (at τ = 0) and ends at sv′ (at τ = 1) where v′ = v −(
AN − id

)
w; note that S is compatible with the identification of (qn (τ w) , 1) ∈ Tn × {1}

with (AN (qn (τ w)) , 0) ∈ Tn × {0} in 1.14.
On the other hand, every homotopy class of sections has a representative s which maps

the basepoint ∗ = [0] = [1] of S1 to [0, 0] ∈ N. Pick a lifting s : I → Rn such that s ([t]) =
[qn (s(t)) , t] and put

v(s) := s(1)− s(0) ∈ Z
n. (4.3)

Then the sections s and sv(s) are homotopic since s can be deformed in Rn into the straight path
from s(0) to s(1). Any other base point preserving representative s′ of [s] can be deformed into
s by a (not necessarily basepoint preserving) homotopy of the form

S ([t], τ) =
[
qn

(
S(t, τ)

)
, t

]
, t, τ ∈ I,

where qn
(
S(0, τ)

)
= qn

(
AN

(
S(1, τ)

))
(compare 4.1 and 1.14). If we put w = S(1, 1)− S(1, 0)

we conclude that

v
(
s′

)
− v (s) = w− AN w.

Therefore, the map [s] → [v(s)] is a welldefined inverse of σ.
Clearly our bijection is compatible with the fiberwise addition of sections.

Next consider a vector v ∈ Zn and a linear map

L : (R
m,Zm) → (R

n,Zn)

such that L ◦ AM = AN ◦ L. The induced homomorphism of tori

L : Tm → Tn

commutes with the gluing maps of M and N and we can define a fiberwise map fL,v by

fL,v ([x, t]) = [L x + qn (t v) , t] (4.4)

(compare 1.14). E.g. if L ≡ 0 and hence L ≡ 0, we see that

f0,v = sv ◦ pM (4.5)
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(compare 1.2); if also v = 0, we obtain the nullmap f0 := f0,0 = s0N ◦ pM as in the discussion
of 1.14.

PROPOSITION 4.6. The assignment

(
L, v

)
// fL,v = fL,0 + sv ◦ pM

determines a welldefined isomorphism from the group
{
L : Z

m → Z
n linear | L ◦ AM = AN ◦ L

}
⊕

(
Z

n�
(
AN − id

)
(Z

n)
)

onto the group of homotopy classes of fiberwise maps f : M → N.
The inverse of this isomorphism maps a fiberwise homotopy class [ f ] to the pair(
L = f |∗ , σ−1

([
s f = f ◦ sM

]))
(cf. 1.12, 4.2 and section 3).

Proof. Here we have chosen the base point ∗ = [1] of B = S1 and used the identifications
Tm = Tm × {1} = FM and FN = Tn ×{1} = Tn when restricting f to these standard fibers (cf.
1.12).
We obtain our result by straightening f both along each fiber and along the zero section s0M

(see propositions 3.1(ii) and 4.2).

EXAMPLE 4.7 : m = n = 1. (compare [GK])
Here AM, AN ∈ GL (1,Z) = {±1}. Thus M equals the 2-dimensional torus T or the Klein
bottle (fibered in the standard way over B = S1), and so does N.
A fiberwise map f is characterized (up to fiberwise homotopy) by two numbers. The first

one is an integer which corresponds to the endomorphism L of Z and must vanish if M 6= N
(since then L = −L, cf. 1.16); it equals the mapping degree of the restriction of f to a single
fiber. The second characterizing number lies in Z (or Z2, resp.) of N = T (or N = K, resp.);
it measures “how often f winds the zero section of M around the fibers of N” (provided f
preserves basepoints in a certain sense).
It can be shown that these two characterizing numbers (and hence the fiberwise homotopy

class of f ) are fully determined by the coincidence invariant ωB( f , f0) (cf. theorem 1.4 in [GK]
and 1.32). �

Now let us check to what extend the data in proposition 4.6 influence the formula 1.17
which describes the Reidemeister invariant (cf. definition 1.26) of the pair ( fL,v, f0).

LEMMA 4.8. Let H ⊂ Zn be a subgroup such that AN(H) = H. If two integer vectors
v, v′ ∈ Zn differ by a vector in H +

(
AN − id

)
(Zn) then the selfmaps βv and βv′ (defined as

in 1.17) on the quotient group G = Zn�H determine the same element in RB (cf. 1.23 (ii)).

Proof. We need to consider only the case where v′ = v+
(
AN − id

)
(w) for some w ∈ Zn.

Then for all u ∈ Z
n

βv′
[
u + AN(w)

]
= βv[u] +

[
AN(w)

]

so that (G, βv) and (G, βv′) are equivalent via the translation by
[
AN(w)

]
.

Lemma 4.8 implies that the Reidemeister invariant depends only on the homotopy class
(over S1) of fL,v. In addition it allows sometimes to simplify the calculation of orbit numbers
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(see e.g. example 4.12 below).

Next we turn to the target of the map g̃ (cf. 1.4). In view of propositions 3.1 and 4.6 it suffices
to focus our attention on spaces of the form EB ( fL,v, f0) where L and v are as in 4.4 and 4.6.
These data allow us also to define a selfhomeomorphism b of DL = (Rm × Zn�∼) (cf. 2.4)
by

b ([x, u]) :=
[
AM(x), AN(u− v)

]
, x ∈ R

m, u ∈ Z
n; (4.9)

(it induces the selfmap β = βv on Zn�L (Zm) which takes [u] to
[
AN (u− v)

]
, cf. 1.17).

THEOREM 4.10.
(i) There is a homotopy equivalence e between the mapping torus

D := (DL × I) � ([x, u], 1) ∼
(
b ([x, u]) , 0

)

and EB ( fL,v, f0) (and e is compatible with the natural projections to I�∼ = S1 ).
In particular, e induces a canonical bijection from the set of all orbits of (the Z-action
determined by) β in Z

n�L (Z
m) onto the set π0 (EB ( fL,v, f0)) of pathcomponents, i.e.

the Reidemeister set RB ( fL,v, f0). Such an orbit of β has an odd number of elements if
and only if the corresponding pathcomponent Q of EB ( fL,v, f0) satisfies the following
condition: the homomorphism

(pM ◦ pr)∗ : H1 (Q;Z2) → H1

(
S1;Z2

)

(induced by the natural projection) is surjective.
(ii) Assume that v ∈ L (Rm). Let E′

B ( fL,v, f0) denote the union of those pathcomponents of
EB ( fL,v, f0) which corresponds to the orbits of β which lie in

(
L (Rm) ∩ Zn

)
�L (Zm).

Then the map

g̃ : CB ( fL,v, f0) → E′
B ( fL,v, f0)

which sends x to (x, constant path at fL,v(x) = f0(x) (compare 1.4)) is a homotopy equiv-
alence. (In fact, g̃ is a homeomorphism onto a strong deformation retract of E′

B ( fL,v, f0)).

Proof. By definition (cf. 4.6) fL,v is built up fiberwise from the maps

ft = L + qn(t v) : Tm // Tn, t ∈ I.

Consider the corresponding homotopy equivalences et (cf. 2.4). They fit together to yield the
homotopy equivalence

e : (DL × I) �∼ // EB ( fL,v, f0) .

Indeed, the effects of the gluing maps AM and AN (cf. 1.14) transform e1 into e0 ◦ b. Moreover,
the process of deforming a path in R

n linearly into the straight path with the same endpoints
is compatible with the identification

AN : R
n × {1} ∼= R

n × {0}

(compare the discussion of 2.5).
Recall from 2.6 that the pathcomponents of DL (and hence of DL × I) can be labelled

bijectively by the elements [u] ∈ Zn�L (Zm). In the mapping torus (DL × I) �∼ the top
end of the component labelled [u] gets glued to the bottom end of the component whose label
is β ([u]). Therefore each orbit

. . . , β−1[u] , u , β[u] , β2[u] , . . .
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of β (of order q) corresponds - via e - to a pathcomponent Q of EB ( fL,v, f0) (which, when
projected to the base S1, winds around it q times).
In order to establish the second claim of theorem 4.10 we have to make the retractions and

deformations in the proof of theorem 2.3(ii) compatible with the gluing in the mapping torus
(DL × I) �∼ . If v and u lie in L (Rm) ∩ Zn then for every t ∈ I

qm
(
L
−1

({u− t v})
)

∼= L
−1

({u− t v}) �
(
Z

m ∩ ker L
)

is a strong deformation retract of

R
m�

(
Z

m ∩ ker L
)

∼= r−1 {[u1]} ⊂ DL

(cf. 2.7). The (affine) retraction depends on a choice: it involves (the projection pK along K in) a
splitting Rm = ker L⊕K. This can be isotoped linearly into the splitting Rm = ker L⊕AM(K).
We can use such an isotopy to make the necessary corrections over a neighbourhood of the
gluing parameter [0] = [1] in the base B = S1.

As a consequence we can settle Case 0 in theorem 1.18.

COROLLARY 4.11. Assume that the linear lifting L : Rm → Rn of L is surjective. Then
MCB ( fL,v, f0) = ∞ and

MCCB ( fL,v, f0) = NB ( fL,v, f0) = #π0 (EB ( fL,v, f0))

equals the number of orbits of (the Z-action defined by) the selfmap β = βv on Zn�L (Zm)
(cf. 1.17).

Proof. Here the smooth map

( fL,v, f0) : M → N ×B N

is transverse to the diagonal △ (compare [GK], 1.4). The pathcomponents of the resulting
generic coincidence manifold CB( fL,v, f0) correspond bijectively - via the coincidence datum
g̃ (cf. 1.4) - to the pathcomponents of EB ( fL,v, f0) = E′

B ( fL,v, f0). They are all essential since
CB ( fL,v, f0) is a closed manifold and g̃ is a homotopy equivalence (too see this, homology
with coefficients in Z2 suffices). This shows that the Nielsen number agrees both with the
Reidemeister and minimum numbers of ( fL,v, f0).
Finally recall from corollary 2.8 that the restriction of ( fL,v, f0) to any given fiber p−1

N {[t]} ∼=
Tm, [t] ∈ S1, cannot be deformed to become coincidence free. Thus any pair of maps from M
to N which is fiberwise homotopic to ( fL,v, f0) must have at least one coincidence point in
each fiber. Therefore MCB ( fL,v, f0) = ∞.

EXAMPLE 4.12. Suppose that M = N is a fiberwise product of n Klein bottles over
S1 (i.e. AM = AN = −id; compare example 4.7). According to proposition 4.6 fiberwise
homotopy classes [ f : M → N] are classified by arbitrary n × n-matrices L with integer
entries and by residue classes [v] ∈ Zn�2Zn. Consider the case where L is diagonal with
odd entries a11, . . . , ann. Then the group Zn is fully generated by its subgroups L (Zm) and(
AM − id

)
(Zn) . According to lemma 4.8 the selfmap βv of

G := Z
n�L (Z

m) =
⊕

Z|aii|

has the same orbit behavior as the involution β0 = AN∗ = −id on G. Here the only odd order
orbit consists of the fixed point 0 ∈ G; all orther orbits have order 2. Thus the values taken by
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the functions νodd, νeven, ν∞ and ν on (G, βv) are

1,
1

2

(
∏ |aii| − 1

)
, 0 and

1

2

(
∏ |aii|+ 1

)
, resp.

(all of them independent of v). �

Finally we prove proposition 1.21. We may assume that L 6= 0. First consider the selfmaps
η+ and η− of the finite group G = Z2�L

(
Z2

)
induced by complex multiplication with i+ 1

and i − 1, resp. They have isomorphic cokernels and kernels of order at most 2 since η− =
i · η+ and

(i± 1) · Z
2 =

{
z = z1 + i z2 ∈ Z

2 | z1 + z2 even
}
.

If k + l (cf. 1.21) is odd (or, equivalently, k2 + l2 ≡ 1 (4)), then Z
2 is spanned by L

(
Z

2
)
and

(i− 1) · Z2. Thus η± is onto and hence bijective. Moreover βv has the same orbit behavior as
β0 = i · id (cf. 4.8).
If k + l is even (and therefore so is k2 + l2), then k + i l = (i + 1)w for some w ∈ Z2 and

we have the exact sequence

0 // Z2
ξ

// G
η+

// G
ζ

// Z2
// 0 (4.13)

with ξ(1) := [w] and ζ[z] := [z1 + z2].
Recall that βv[z] = i[z]− i[v], [z] ∈ G. Thus we see by induction that

βs
v[z] = is[z]−

(
is + is−1 + . . . + i

)
[v]

for all s ≥ 1. Clearly β4
v ≡ id so that βv can have only orbits of order 1, 2 and 4.

We can characterize the fixed points [z] of βv by the condition η+[z] = [v]. The number ν1
of such points equals #ker η+ except when ζ[v] = [v1 + v2] 6= 0 (cf. 4.13).
If an orbit of order 2 exists, it has the form O = {[z], βv[z]} where

β2
v[z] − [z] = −2[z]− (i− 1)[v] = η− (η+[z]− [v]) = 0

but −i (βv[z]− [z]) = η+[z] − [v] 6= 0. This can happen only if k ≡ l(2) and η+[z] − [v] is
the unique nontrivial element [w] of ker η− = ker η+ (cf. 4.13), i.e. ζ[v + w] = 0 and O =
η−1

+ {[v+ w}; note that ζ[v + w] = [v1 + v2 + l] since (i + 1) ·w = k + i l.
The remaining orbits have order 4 and the cardinalities of all orbits sum up to yield the

cardinality of the quotient group G = Z
2�L

(
Z

2
)
. Here every residue class contains a unique

integer vector which lies in the halfopen parallelogram P (cf. 6.6) spanned by L(1) = k + i l
and L(i) = −l + i k. Thus #G = det

(
L(1), L(i)

)
= k2 + l2 and the proof of proposition 1.21 is

complete.

5. Computing obstruction groups

We continue to discuss the case B = S1. In this section we develop a technique which allows
us often to describe the normal bordism groups in which the ω-invariants lie, and the effect
of the Hurewicz homomorphisms into the homology with coefficients in Z2.
Given invertible matrices AM ∈ GL (m,Z) and AN ∈ GL (n,Z) as in section 4, consider the

manifolds

M := R
m × I�(x, 1) ∼

(
AM(x), 0

)
, x ∈ R

m, (5.1)

and

N := R
n × I�(u, 1) ∼

(
AN(u), 0

)
, u ∈ R

n, (5.1’)
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which are total spaces of covering maps over M and N (cf. 1.14) and of vector bundles over
S1 = I�0 ∼ 1.
The pullbacks p∗M

(
M

)
and p∗N

(
N

)
of these vector bundles are canonically isomorphic to

the tangent bundles TF(pM) and TF(pN) along the fibers of pM and pN, resp., (and hence
stably isomorphic to the full tangent bundles TM and TN, resp.). Thus the virtual coefficient
bundle

ϕ = p∗M
(
N − M

)
= p∗M(λd) ∈ K̃OM) = KO(M)�{trivial vector bundles} (5.2)

(cf. 1.6) is independent of the maps f1, f2 and depends only on

d := det
(
AM

)
· det

(
AN

)
∈ {±1} (5.3)

here λd := R × I�(r, 1) ∼ (d · r, 0) denotes the corresponding line bundle over S1.
In this section we will identify the torus Tn with the fiber FM of pM over the base point

∗ := [1] ∈ I�1 ∼ 0 = S1 via the homeomorphism x → [x, 1], x ∈ Tm.

PROPOSITION 5.4. Given fiberwise maps f := fL,v, f0 : M → N over S1 as in 4.4 and
4.5, put E := EB( f , f0) for short and let E| := E|FM denote the restriction to the fiber FM =
p−1
M {[1]} = Tm.
(i) There is a commuting diagram of long exact sequences

. . . // Ωfr
∗ (E|)

b∗−d·id
//

pr|∗

��

Ωfr
∗ (E|)

incl∗ //

pr|∗

��

Ω∗(E; pr∗(ϕ))
⋔ //

pr∗

��

Ωfr
∗−1(E|)

//

pr|∗

��

. . .

. . . // Ωfr
∗ (Tm)

AM∗−d·id
// Ωfr

∗ (Tm)
incl∗ // Ω∗(M; ϕ)

⋔ // Ωfr
∗−1(T

m) // . . . ,

and the homomorphism ⋔ maps ω̃B( f , f0) (and ω( f , f0), resp.) to the corresponding ω-
invariants of the restricted pair ( f |FM, f0|FM) (compare section 2).
Here Ωfr

∗ denotes framed bordism; moreover the selfmap b of E| is defined by

b(x, θ) = (AM(x), AN ◦ (c−v ∗ θ))

where c−v denotes the loop at θ(0) in Tn which lifts to a path c−v : I → Rn with constant
velocity −v and ∗ means concatenation.

(ii) Similarly there is the commuting diagram of long exact sequences (in homology with
Z2-coefficients)

. . . // H∗(E|)
b∗−id

//

pr|∗

��

H∗(E|)
incl∗ //

pr|∗

��

H∗(E) //

pr∗

��

H∗−1(E|) //

pr|∗

��

. . .

. . . // H∗(Tm)
AM∗−id

// H∗(Tm)
incl∗ // H∗(M) // H∗−1(T

m) // . . . .

This is related to the diagram in (i) above by two commuting ladders which involve
Hurewicz homomorphisms as rungs.

Proof. Consider any relative normal bordism class

c = [C, g, g] ∈ Ω∗ (M,M− FM; ϕ)

i.e. the compact smooth manifold C has possibly a boundary ∂C, g maps (C, ∂C) to
(M,M− FM) and g is a stable trivialization of the vector bundle TC ⊕ g∗(ϕ). After a small
deformation we may assume that pM ◦ g is smooth and transverse to {∗} := {[1]} ⊂ S1.



FIXED POINTS AND CONCIDENCES IN TORUS BUNDLES Page 23 of 30

Restrict the data of c to the closed 1-codimensional submanifold (pM ◦ g)−1 {∗} = g−1 (FM)
which inherits a framing since λd|{∗} is trivial. This procedure yields the isomorphism

⋔rel: Ω∗ (M,M− FM; ϕ)
∼= // Ωfr

∗−1(T
m). (5.5)

Furthermore for small ε > 0 the obvious composite inclusion map

in : Tm ≈ Tm × {1− ε} ⊂ Tm × (0, 1) ≈ M− FM (5.6)

(compare 1.14) is a homotopy equivalence and hence induces a canonical isomorphism

in∗ : Ωfr
∗ (Tm)

∼= // Ωfr
∗ (M− FM) = Ω∗

(
M− FM; p∗M(λd)

∣∣). (5.7)

If we use these isomorphisms ⋔∗ and in∗ to simplify the exact normal bordism sequence of
the pair (M,M− FM) (compare e.g. [CF], p. 13) we obtain the lower sequence of the diagram
in 5.4(i). The second and third homomorphisms are induced by the inclusion map and by
transverse intersection with the fiber FM. It remains to calculate the first homomorphism
(which is derived from the boundary operator ∂). Given a framed singular manifold

h : H → FM = Tm × {1} (
AM

∼=
// Tm × {0})

(compare 1.14), take its product with the inclusion map i from the interval J = [1 − ε, 1] ∪
[0, ε]�1 ∼ 0 into the basis circle B = I�1 ∼ 0. Then the boundary of h × i represents ∂ ◦(
⋔rel

)−1
([h]). When we apply the isomorphism in−1

∗ the two boundary parts hε and h1−ε

get shifted to A ◦ h and h, resp. Therefore

±in−1
∗ ◦ ∂ ◦

(
⋔
rel

)−1
= AM∗ − d id;

the factor d = ±1 (cf. 5.3) appears due to the possible switch of framings induced from λd at
[1] = [0] ∈ B. We obtain the upper exact sequence in the diagram of proposition 5.4(i) in an
analoguous fashion. The compatibility of the ω-invariants with ⋔ is seen by inspecting their
definitions.
For the proof of our claim (ii) consider the isomorphisms

H∗(Tm) ∼=

×
// H∗+1 (Tm × (J, J − {∗})) ∼=

i∗ // H∗+1 (M,M− Tm) (5.8)

(compare 5.5) where J is again a closed interval around the basepoint ∗ = [1] in S1, × is
defined by the homology cross product with the generator of H1 (J, J − {∗}) ∼= H1 (J, ∂J) (cf.
[S], pp. 234-235) and i denotes the composite of a fiber preserving homeomorphism over J
and the excision inclusion of p−1

M (J, J − {∗}) into (M,M− Tm). We compare the two long
exact homology sequences of the two space pairs at the right hand side in 5.8. Due to the
compatibilities of the cross product (cf. [S], p. 235, fact 15) the boundary homomorphism in
the first of these sequences can be identified with the diagonal map into H∗(Tm)⊕ H∗(Tm) =
H∗ (Tm × ∂J). Since the two points of ∂J lie on different sides of ∗ in S1 the gluing map of M
comes into play again when we use the isomorphism induced by the inclusion map in (cf.
5.6). Thus the exact homology sequence of the pair (M,M− Tm) takes the form described in
the lower line of the diagram in claim (ii).
The upper sequence in (ii) can be obtained in a similar way. Here it may be helpful to use

the mapping torus model of E (cf. theorem 4.10(i)) and to exploit the fact that it is the total
space of a locally trivial fibration.
It is not hard to check that all the identifications and other homomorphisms involved in our

two diagrams are compatible with the mod 2-Hurewicz homomorphisms.
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REMARK 5.9. If L (Rm) = Rn then µ2◦ ⋔
(
ω̃B,Q( f , f0)

)
(cf. 6.14) is nontrivial for every

pathcomponent Q of EB( f , f0) (cf. 2.3ii) and hence so is µ2

(
ω̃B,Q( f , f0)

)
by proposition 5.4.

6. The case dim
(
L(Rm)

)
= n− 1

Throughout this section we consider again fiberwise maps f := fL,v, f0 : M → N over
S1 as in 4.4, 4.5 and 5.4 and we assume that the image of the linear map L : Rm → Rn has
dimension n− 1. As usual H∗(−) denotes homology with coefficients in Z2.
According to theorem 2.3(i) the pathcomponents of E| = E ( f |Tm, 0) are labelled by

K := Z
n�L(Z

m)

and each of them is homotopy equivalent to a torus of dimension m − n + 1. Therefore we
may identify Hm−n+1(E|) with

⊕
K Z2. Then proposition 5.4 yields the exact sequence

⊕

K

Z2
b∗−id

//
⊕

K

Z2
incl∗ // Hm−n+1(E) (6.1)

where b∗ maps the Z2-factor labelled by [u] ∈ K identically to the Z2-factor labelled by β ([u])
(cf. 4.9). Thus each orbit O of β contributes a single Z2-factor to the cokernel of b∗ − id (and
hence to the image of incl∗), and incl∗ just forms the sum of the Z2-entries with labels in O.
In particular, we obtain

LEMMA 6.2. The image of any element of the form (0, . . . , 0, 1, 0, . . .) under incl∗ is
nontrivial.

Next note the direct sum decomposition

Z
n ∼=

(
Z

n ∩ L (R
m)

)
⊕ Z; (6.3)

here the Z-factor is generated by a vector y2 in Zn which realizes the minimal strictly positive
distance between elements of Z

n and the hyperplane L (R
m) in R

n.
Since L ◦ AM = AN ◦ L (compare 4.6), AN preserves Zn ∩ L (Rm) and induces the automor-

phism a · identity on the quotient Zn�
(
Zn ∩ L (Rm)

)
∼= Z where a = ±1.

THEOREM 6.4. Assume a = +1. We may choose vectors w1, . . . ,wn−1 ∈ Zn which gener-
ate L (Z

m). Then

MCCB ( fL,v, f0) = NB ( fL,v, f0) = |det (v,w1, . . . ,wn−1)| .

This is also equal to the Reidemeister number #RB( fL,v, f0) whenever v /∈ L (Rm); otherwise
the Reidemeister set of ( fL,v, f0) is infinite.

Proof. Put f := fL,v for short. If v ∈ L (Rm) we can push the zero section s0 of pN slightly
away from the image of f (which is a cooriented hypermanifold in N). Thus the pair ( f , f0) is
loose over B, its minimum and Nielsen numbers vanish, and so does the determinant of the
n× n-matrix formed by the vectors v,w1, . . . ,wn−1. Furthermore, AN and β (cf. 4.9) preserve
the Z-levels in 6.3; thus there are infinitely many orbits of β or, equivalently, Reidemeister
classes (cf. theorem 4.10.i).
Next consider the case where v /∈ L (Rm). Here the derivatives of the map ℓ : Rm× I → Rn,

defined by

ℓ (x, t) = L(x) + t v,
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are everywhere surjective. Therefore the coincidence manifold (which has the form

C( f , f0) = (qm × idI)
(
ℓ
−1

(Z
n)

)
�(x, 1) ∼ (AM(x), 0)

= ∐
u∈Zn∩P

(qm × idI)
(
ℓ
−1

{u}
)

� ∼
(6.5)

where

P := {t0v + t1w1 + . . .+ tn−1wn−1 | all ti ∈ [0, 1)}) (6.6)

satisfies the necessary transversality condition and can be used to calculate ω̃B( f , f0)
(compare the discussion of 1.4 above or in [GK]).
Given an integer vector u in the paralleliped P (cf. 6.6), the pathcomponent

Cu := (qm × idI)
(
ℓ
−1

{u}
)

of C( f , f0) is an affine (m− n+ 1)-dimensional subtorus of the fiber p−1
M {τ} = Tm ×{τ} over

τ =
[

i
|v2|

]
∈ S1 = I�∼ for some integer 0 ≤ i < |v2| where v2 denotes the Z-component of

v (cf. 6.3). Consider the restricted map

f | : Tm × {τ} // Tn × {τ}

and the resulting coincidence data

C( f |, 0)
g̃|

// E( f |, 0)
incl // E ( fL,v, f0) .

It follows from theorem 2.3(ii) that g̃| yields a homotopy equivalence from the pathcomponent
Cu of C( f |, 0) to some pathcomponent of E( f |, 0). The corresponding statement holds for the
inclusion map incl since all orbits of β are infinite here (use 4.10i). Therefore g̃ : C( f , f0) →
E( f , f0) (cf. 1.4) as a whole is a homotopy equivalence. Indeed, since a = +1 the Reidemeister
set π0 (E ( fL,v, f0)) also corresponds bijectively to the elements u of Z

n ∩ P. It is not hard to
check that this is compatible with the decomposition 6.5. In particular, all pathcomponents
of E( f , f0) are essential (as detected by mod 2 homology Hm−n+1) and all Nielsen classes are
pathconnected. Their number equals # (Zn ∩ P) , i.e. the volume of the paralleliped P in Rn

which can be described by the indicated determinant.

Given a vector v ∈ Zn, consider its decomposition

v = v1 + v2 ∈
(
Z

n ∩ L (R
m)

)
⊕ Z (6.7)

(cf. 6.3); clearly v2 can be described, up to sign, in terms of the Euclidean distance function by

|v2| =
dist

(
v, L (Rm)

)

dist
(
y2, L (Rm)

) (6.8)

where y2 generates the Z-factor.
If a = −1 only the residue class

[v] ∈ Z
n�

(
AN − id

)
(Z

n)

and hence only the parity of the integer v2 is determined by the fiberwise homotopy class of f
(cf. prop. 4.6). In fact, if v2 is even we may find a representive of [v] which lies in L (Rm) (see
also the proof below).

THEOREM 6.9. Assume a = −1. Then the Reidemeister set π0 (EB ( fL,v, f0)) is infinite.
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If v2 is odd, then the pair ( fL,v, f0) is loose and

MCCB ( fL,v, f0) = NB ( fL,v, f0) = 0

If v ∈ L (Rm), consider the selfmap β|K′ defined on the finite set

K′ :=
(
Z

n ∩ L (R
m)

)
�L (Z

m)

by β|K′ ([u]) =
[
AN (u− v)

]
, [u] ∈ K′ (compare 1.17). Then

MCCB ( fL,v, f0) = NB ( fL,v, f0)

equals the number of odd order orbits of the Z-action on K′ determined by β|. (For a more
geometric interpretation of this ”odd order condition“ see theorem 4.10(i).)

Proof. Again put f := fL,v. The Reidemeister set π0 (EB ( f , f0)) has the same cardinality
as the set of all orbits of the full selfmap β of K = Zn�L (Zm) ∼= K′ ⊕ Z (cf. 4.10(i) and 6.3).
Since a = −1, β induces an involution on Z and hence has infinitely many orbits.
The decomposition

R
n = L (R

m) × R (6.3’)

corresponding to 6.3 is compatible with the gluing ismorphism AN at least to the extend

to imply that the sets L (Rm) ×
{

i
2

}
× I, i = 0, 1, project onto disjoint 1-codimensional

submanifolds Ni of N. First we will show that sv (cf. 4.1) - and hence fL,v - can be deformed
into Ni where i ≡ v2 mod2.
There exists a homotopy

h : I × I // Rn = L (Rm) × R

such that for all t, τ ∈ I we have
(i) h(t, 0) = t v = t (v1, v2);

(ii) h(0, τ) = AN

(
0,−τ · v2

2

)

h(1, τ) =
(
v1, (2− τ) · v2

2

)
; and

(iii) h(I × {1}) ⊂ L (Rm) ×
{

v2
2

}
.

The resulting homotopy H : I × I → Rn × I, H(t, τ) := (h(t, τ), t), ist compatible (modZn)
with the gluing isomorphism AN . When composed with the projection to N this yields a
homotopy which deforms sv into a section of pN whose image lies in Ni.
If v2 is odd, this induces (in view of 4.6) also a homotopy which pushes fL,v into Ni = N1,

i.e., away from the image of f0 which lies in N0.
If v2 is even we may (and will) assume that - after a similar deformation - v lies in L (Rm)

(and hence f = fL,v maps into N0). Then, given u ∈ Zn ∩ L (Rm),

Cu := (qm × id)
({

(x, t) ∈ R
m × I | L x + t v = u

})
(6.10)

is a nonempty connected, (m− n+ 2)-dimensional submanifold of Tm× I with two boundary
components ∂0Cu and ∂1Cu (at t = 0 and t = 1, resp.). Any two such submanifolds Cu,Cu′ are
equal or disjoint according as u− u′ lies in L (Zm) or not. Hence all of them can be labelled
by the elements [u] of the quotient set K′ =

(
Zn ∩ L (Rm)

)
�L (Zm).

The coincidence locus

C( f , f0) ⊂ M = Tm × I�∼
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is obtained from the union of all manifolds C[u] by gluing (via AM, cf. 1.14) each

top end ∂1C[u] = qm
(
L
−1

({u− v})
)
× {1} to the corresponding bottom end ∂0Cβ[u] =

qm
(
L
−1 ({

AN (u− v)
}))

× {0} of CAN(u−v) (compare 1.16 and 4.10).

The pair ( f = fL,v, f0) has one big flaw: it does not yet satisfy the transversality condition
needed for the construction of ω-invariants (cf. [GK], 1.4). To make up for this, let us
approximate sv by a smooth section s of pN of the form

s ([t]) = [qn (s1(t), s2(t)) , t] , t ∈ I, (6.11)

(compare 4.1 and 6.3’) where s1(0) = 0 and (for some small ε > 0) the values of s2(t) are
t, 1− t and near ε, resp., when t lies in the intervals [0, ε], [1− ε, 1] and [ε, 1− ε], resp. Then f
is homotopic to the fiber preserving map fs defined by

fs ([x, t]) = [L x + s(t), t] (6.12)

(compare 4.4). Moreover the pair ( fs, f0) satisfies the desired transversality condition (since
a = −1).
Since f0(M) lies in N0 = (L (Tm) × I) �∼ but s ([t]) and fs ([x, t]) do so only when [t] =

[0] ∈ (I�∼) = S1, the coincidene manifold of ( fs, f0) is the intersection of C( f , f0) with the
fiber of pM over [0] = [1], i.e. C( fs, f0) is the (image of the) disjoint union of all the affine
subtori ∂0C[u], [u] ∈ K′, in the torus p−1

M {[0]} ⊂ M (compare the discussion of 6.5).

If β
(
[u]

)
6= [u] (compare the definitions in 4.9 and 6.9), then ∂0C[u] and ∂1C[u] ≈ ∂0Cβ[u] are

disjoint in M and connected by the bordism C[u] which embeds naturally in M.
Deform fs (cf. 6.12 and 6.11) in a small tubular neighbourhood of this bordism until the
contribution of s2 is strictly negative along all of C[u] but leave the contributions of s1 and
L unchanged. This eliminates the two coincidence components ∂0C[u] and ∂0Cβ[u] without
creating new ones.
Now recall from 4.10(i) that any given Nielsen class in CB( fs, f0) consists of all those

manifolds ∂0C[u] which are labelled by the elements [u] of the corresponding orbit of β|K′.
We can reduce it - via pairwise elimination as above - to a single component (or the empty
set, resp.) if the cardinality of the orbit is odd (or even, resp.). This geometric fact is closely
reflected by the algebra of the upper exact sequence in 5.4ii. In particular, each odd order
orbit of β|K′ corresponds to a Nielsen class which is both pathconnected and essential; the
latter property is already detected by homology with coefficients in Z2 (use lemma 6.2). This
establishes the last claim in 6.9.

In the spirit of the previous proof we obtain also a geometric essentiality criterion.

COROLLARY 6.13. Assume that a = −1.
Then a pathcomponent Q of EB ( fL,v, f0) is essential if and only if the (restricted) composite

projection (cf 1.2 and 1.4)

pM ◦ pr| : Q // B = S1

induces a nontrivial homomorphism from H1 (Q;Z2) to H1

(
S1;Z2

)
.

Proof. According to theorem 4.10(i) this induced homomorphism is onto precisely if the
orbit O = {. . . , [u], β[u], . . .} which corresponds to Q has an odd order. This can happen
only if v2 ≡ 0(2) (so that we may assume v to lie in L (Rm)) and O ⊂ K′ (cf. 6.9); indeed,
when β alternates between different Z-levels in Zn�L (Zm) ∼= K′ ⊕ Z , the resulting orbits
have an even cardinality. Our claim follows now from the proof fo theorem 6.9.
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Here is another, more general essentiality criterion in terms of mod 2 homology.

THEOREM 6.14. Whether a = +1 or a = −1, a pathcomponent Q of EB( f , f0) is essential
if and only if

µ2

(
ω̃B,Q( f , f0)

)
= g̃∗

([
CQ

])
∈ Hm−n+1 (Q;Z2)

does not vanish (where µ2 is the Hurewicz homomorphism, cf. 1.30, and

ω̃B,Q( f , f0) :=
[
CQ, g̃|CQ, g|

]
∈ Ωm−n+1 (Q; ϕ̃|)

denotes the contribution of Q to ω̃B( f , f0), compare definition 1.7).

Proof. If Q is essential, then - in each of the cases discussed in the previous proofs - the
corresponding component CQ of the (possibly modified) coincidence set is an affine subtorus

of the fiber p−1
M {[t]} ∼= Tm for some [t] ∈ S1. Moreover according to theorem 2.3(ii) g̃|CQ is a

homotopy equivalence to some pathcomponent of E| = EB( f , f0)|T
m. Thus µ2

(
ω̃B,Q( f , f0)

)

has the form incl∗(0, . . . , 0, 1, 0, . . .) (cf. 6.1) and must be nontrivial by lemma 6.2. This holds
still true in the case a = −1, v ∈ L (Rm) wherewe deformed ( f , f0) into ( fs, f0). Indeed, such a
homotopy induces a fiber homotopy equivalence from EB( f , f0) to EB( fs, f0) (compare [Ko2])
which is compatible with the arguments in our discussion.

THEOREM 6.15. For each fiberwise map f : M → N

MCB( f , f0) =

{
NB( f , f0) if NB( f , f0) = 0 or m < n;

∞ else.

Proof. Suppose ( f , f0) is homotopic to a pair ( f ′, f ′0)with only a finite set C′ of coincidence
points. Then - after a further, small homotopy - we obtain a generic pair ( f1, f2) with
coincidence data (C, g̃, g) (cf. 1.3-1.5) such that the coincidence manifold C (and the paths of
g̃(C), resp.) lie in small ball neighbourhoods of the points of C′ in M (and of f ′(C′) = f ′0(C

′)
in N, resp.). Hence g̃ is homotopic to a locally constant map.
If m− n + 1 > 0, then

g̃∗ ([C]) = µ2 (ω̃B( f1, f2)) ∈ Hm−n+1 (EB( f1, f2))

vanishes and so does NB( f1, f2) = NB( f , f0) = MCCB( f , f0) = MCB( f , f0) in view of theo-
rems 6.14, 6.4 and 6.9.
If m− n + 1 = 0, then each essential Nielsen class can be realized by a single point (cf. the

proofs of theorems 6.4 and 6.9); therefore MCB( f , f0) = NB( f , f0).
These numbers vanish whenever m− n + 1 < 0.

We have now established theorems 1.13 and 1.18 of the introduction. So let us turn to the
proof of theorem 1.27.
First consider the subcase 1− in theorem 1.18. If quot([v]) = 0 (i.e. v2 is even) the

Reidemeister invariant ̺( f1, f2) (cf. 1.26) can be represented by a selfmap βv of

Z
n�L (Z

m) ∼= K′ × Z

where K′ =
(
Zn ∩ L (Rm)

)
�L (Zm) (cf. 6.3, 6.7 and 6.9) and v ∈ L (Zm). Since βv maps

K′ × {i} to K′ × {−i} for all i ∈ Z, the only odd order orbits can lie in K′ × {0} and all the
other orbits have an even cardinality. If v2 is odd, then βv restricts to a bijection between the
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two disjoint sets K′ × {i} and K′ × {v2 − i} and there are no infinite or odd order orbits at
all.
Next consider subcase 1+. If v2 6= 0 then all orbits of βv are infinite and they can be indexed

by the integer vectors in the paralleliped P (cf. 6.6). If v2 = 0 and hence βv preserves the Z-
levels in K′ × Z , then every orbit in K′ × {i}, i ∈ Z, gives rise to infinitely many “parallel”
orbits in K′ × (i + (#K′) · Z) which have the same (finite!) order; indeed write AN∗(0, 1) =
(κ, 1) in K′ × Z and check how

βv(x, i) = (βv(x) + i κ , i) , x ∈ K′,

depends on i, when taken modulo the order #K′ of K′.
Table 6.16 sums up these observations concerning the number of orbits of the selfmap βv

(which represents the Reidemeister invariant ̺B( f1, f2); cf. 1.23-1.26).

νodd νeven ν∞ νB = ν′odd + ν′even + ν∞

Case 0 finite finite 0 #{all orbits} 6= 0

Subcase 1+, v2 6= 0 0 0 # (Zn ∩ P) # (Zn ∩ P) (cf. 6.6) 6= 0
Subcase 1+, v2 = 0 0 or ∞ 0 or ∞ 0 0

Subcase 1-, v2 odd 0 ∞ 0 0
Subcase 1-, v2 even finite ∞ 0 νodd

TABLE 6.16. The number of orbits of ̺B( f1, f2) (The pair ( f1, f2) is loose over S
1 precisely if νB = 0.)

According to theorem 1.18 MCCB( f1, f2) = NB( f1, f2) agrees with the value of
νB (̺B( f1, f2)) listed in table 6.16. In view of theorem 1.13 this completes the proof of theorem
1.27. �

A simple way to obtain interesting illustrations for the results of this section is to start from
a linear map L : Zm → Zn of rank n and compose it with the inclusion map

in : Z
n ⊂ Z

n+1. (6.17)

(compare also example 1.20).

EXAMPLE 6.18. Start from the situation in example 4.12 but add an extra Klein bottle K
fiberwise to the target bundle N and replace L and v by in ◦ L : Zn → Zn+1 and in(v) , resp.
Then we are in subcase 1-. This transition preserves only νodd; the extra space in N ×B K
makes Nielsen coincidence classes inessential whenever they correspond to an orbit having
an even cardinality. �
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GR2 D. L.GONÇALVES and D. RANDALL, ’Self-coincidence of mappings between spheres and the strong Kervaire
invariant one problem’, Comptes Rendus Math. Acad. Sci. Paris, Ser. I 342 (2006), 511-513.
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